检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李忠虎[1] 何苗 LI Zhonghu;HE Miao(Key Laboratory of Intelligent Passenger Service of Civil Aviation of Travelsky Technology Limited Corporation,Beijing 101318;Research and Development Center of Chengdu Civil Aviation Southwest Cares LTD,Chengdu Sichuan 610000,China)
机构地区:[1]中国民航信息网络股份有限公司民航旅客服务智能化应用技术重点实验室,北京101318 [2]成都民航西南凯亚有限责任公司研发中心,四川成都610000
出 处:《四川文理学院学报》2020年第2期76-81,共6页Sichuan University of Arts and Science Journal
摘 要:民航客运量预测是实现智能交通的重要环节,强相关的自变量探寻和精准预测模型建立具有重要意义,有助于民航业资源优化配置,提升旅客出行体验.现民航业普遍采用时间序列的方式进行客运量的预测,本文主要从民航客运量与国民受教育水平相关性分析入手,成功构造与民航客运量强相关的自变量,滚动累计普通本专科毕业规模,皮尔逊相关系数高达0.994,并通过该单变量构造回归模型,提出民航客运量预测的一种新方式,实现未来两年的民航客运量发展预测.The prediction of civil aviation passenger traffic volume was an important part of the realization of intelligent transportation.The exploration of strongly related independent variables and the accurate prediction model was significant to optimize the allocation of civil aviation resources and improve the travel experience of passengers.At present,the Time Series method was widely used to predict the civil aviation passenger traffic volume.Starting from the correlation analysis of civil aviation passenger traffic volume and national education levels,the independent variable was successfully constructed that is strongly related to the passenger traffic volume of civil aviation,called the accumulated the graduation scale of ordinary junior college by rolling.Pearson’s correlation coefficient between them was as high as 0.994.Through the single variable,the related regression model was constructed,and a new way was proposed to predict the passenger traffic volume of civil aviation,so that the passenger traffic volume of civil aviation can be predicted in the next two years.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3