检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯艳辉[1] 董慧芳 郝敏[1] 崔雪莲 HOU Yanhui;DONG Huifang;HAO Min;CUI Xuelian(College of Economics and Management,Shandong University of Science and Technology,Qingdao Shandong 266590,China)
机构地区:[1]山东科技大学经济管理学院,山东青岛266590
出 处:《计算机应用》2020年第4期1074-1078,共5页journal of Computer Applications
基 金:山东省自然科学基金资助项目(ZR2019BG011)。
摘 要:针对中文影评情感分类中缺少特征属性及情感强度层面的粒度划分问题,提出一种基于本体特征的细粒度情感分类模型。首先,利用词频逆文档频率(TF-IDF)和TextRank算法提取电影特征,构建本体概念模型。其次,将电影特征属性和普鲁契克多维度情绪模型与双向长短时记忆网络(Bi-LSTM)融合,构建了在特征粒度层面和八分类情感强度下的细粒度情感分类模型。实验中,本体特征分析表明:观影人对故事属性关注度最高,继而是题材、人物、场景、导演等特征;模型性能分析表明:基于特征粒度和八分类情感强度,与应用情感词典、机器学习、Bi-LSTM网络算法在整体粒度和三分类情感强度层面的其他5个分类模型相比,该模型不仅有较高的F1值(0.93),而且还能提供观影人对电影属性的情感偏好和情感强度参考,实现了中文影评更细粒度的情感分类。In view of the lack of feature attributes and the granularity division on emotion intensity level in Chinese film reviews,a fine-grained sentiment classification model based on ontological features was proposed.Firstly,Term Frequency-Inverse Document Frequency(TF-IDF)and TextRank algorithm were used to extract movie features and construct ontology conceptual model.Secondly,the film attributes and Plutchik’s Wheel of Emotion were combined with Bidirectional Long Short-Term Memory(Bi-LSTM)neural network to build a fine-grained emotion classification model based on feature granularity level and eight-category emotion intensity.In the experiments,the analysis of ontological features shows that the movie viewers pay the most attention to the attributes of the story,followed by the features of theme,character,scene and director;Model performance analysis shows that,based on feature granularity and eight-category emotion intensity,compared with other five classification models using emotion dictionary,machine learning and Bi-LSTM network algorithm at the level of overall granularity and three-category emotion intensity,the proposed model not only has a higher F1 value(0.93),but also can provide viewers with a reference to emotional preferences and emotional intensities of film attributes,and achieves a more fine-grained emotional classification of Chinese film reviews.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.85