多分辨率差分图像非参数核密度估计方法仿真  被引量:1

Nonparametric Kernel Density Estimation for Multiresolution Differential Images

在线阅读下载全文

作  者:冯桂莲[1] FENG Gui-lian(School of Physics and Electronic Information Engineering,Qinghai Nationalities University,Xining Qinghai 810000,China)

机构地区:[1]青海民族大学物理与电子信息工程学院,青海西宁810000

出  处:《计算机仿真》2020年第3期372-376,共5页Computer Simulation

基  金:青海民族大学2017年教育部"春晖计划"合作科研项目(Z2017048);2017年国家社科基金项目(17BMZ046)。

摘  要:针对多分辨率差分图像核密度估计阶段中,由于信息冗余与重复计算导致的估计结果准确率下降的问题,提出一种非参数核密度估计方法。利用硬件设备采集多分辨率视频序列,提取关键帧图像作为样本集。分割多分辨率的差分图像,形成由背景图像与前景运动目标两部分组成的初始模型。以该模型为基础构建Copula核函数,利用核函数的运算性能分别确定估计窗宽、方差和核密度公式,从而输出差分图像非参数核密度的估计结果。通过仿真得出结论:研究方法平均准确率为98.56%,与传统核密度估计方法相比提升了6.04%,证明此方法具有较高的应用价值。The accuracy of estimation results is decreased due to information redundancy and repeated calculation in the stage of kernel density estimation for multi-resolution differential image.Therefore,a method of non-parametric kernel density estimation was put forward.Firstly,the hardware equipment was used to collect the multi-resolution video sequence and extract the key frame of image as the sample set.Then,the multi-resolution differential image was segmented to form an initial model which was composed of background image and foreground moving target.Based on this model,Copula kernel function was constructed and the calculation performance of kernel function was used to determine the estimation window width,variance and kernel density respectively,and thus to output the estimation result of non-parametric kernel density of difference image.Simulations show that the average accuracy of the proposed method is 98.56%,which is improved by 6.04%compared with that of traditional kernel density estimation method.

关 键 词:分辨率 差分图像 非参数核密度 密度估计 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象