基于CNN-LFM模型的个性化推荐  被引量:5

Personalized Recommendation Based on CNN-LFM Model

在线阅读下载全文

作  者:梁昌勇[1] 范汝鑫 陆文星[1] 赵树平[1] LIANG Chang-yong;FAN Ru-xin;LU Wen-xin;ZHAO Shu-ping(College of Management,Hefei University of Technology,Hefei Anhui 230009,China)

机构地区:[1]合肥工业大学管理学院,安徽合肥230009

出  处:《计算机仿真》2020年第3期399-404,共6页Computer Simulation

基  金:国家自然科学基金项目(71331002,71771075,71771077,71601061)。

摘  要:评分数据的稀疏性和新物品的冷启动问题一直是阻碍推荐系统发展的难题。针对这些问题,利用物品的图像数据作为辅助信息以提高评分预测的准确性,提出一种基于卷积神经网络与隐语义模型的推荐模型(CNN-LFM)。CNN-LFM模型利用隐语义模型挖掘评分数据,获得用户和物品的潜在特征,其中物品的潜在特征会在卷积神经网络提取的图像特征的约束下不断完善。在真实数据集下进行实验,对结果的定量和定性分析表明CNN-LFM模型不存在新物品的冷启动问题,即使当评分数据十分稀疏时,其性能也远远优于其它推荐模型。The sparseness of rating data and the cold start of new items have been problems that hamper the development of recommendation systems.To solve these problems,the image data of the item were applied as auxiliary information to improve the accuracy of the rating prediction in this article,and a recommendation model based on conv?olutional neural network and latent factor model(CNN-LFM)was proposed.The CNN-LFM model used the latent factor model to mine rating data to obtain potential features of users and items,and the latent factors of the items can be continuously improved under the constraint of image features extracted from the convolutional neural network.Experiments were conducted based on real data sets.Quantitative and qualitative analyses of the results show that there is no cold start problem for new items in this method.Even if the rating data is highly sparse,the performance of CNN-LFM is much better than other recommendation models.

关 键 词:卷积神经网络 个性化推荐 评分数据 隐语义模型 图像数据 推荐模型 潜在特征 CNN 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象