检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓海 操新文 彭双震 温玉韬 ZHANG Xiaohai;CAO Xinwen;PENG Shuangzhen;WEN Yutao(Joint Operation College,NDU of PLA,Shijiazhuang 050084,China;Hybrid Brigade of Tibet Reserve Army,Lhasa 850000,China)
机构地区:[1]国防大学联合作战学院,河北石家庄050084 [2]西藏陆军预备役混成旅,西藏拉萨850000
出 处:《信息工程大学学报》2019年第4期502-506,512,共6页Journal of Information Engineering University
基 金:国家社会科学基金资助项目(16GJ003-051)。
摘 要:为解决部分军事命名实体导致规则、统计等传统模型识别率不高的问题,提出一种基于双向长短期记忆—条件随机场(BI-LSTM-CRF)的作战文书命名实体识别方法。介绍作战文书命名实体识别的概念、特点,给出模型具体训练方法与步骤,在手工构建的数据集上进行开放性测试。结果表明,该方法能有效提升作战文书命名实体的识别准确率,模型最终的识别精确率和召回率分别达到91.40%和90.43%。Military named entity recognition is the basis of key information extraction for combat documents.Some military named entities have complex combination and nested relationship.In addition,different services have different professional expressions.These conditions lead to a low recognition rate of traditional models based on rules and statistics.In this paper,a method of named entity recognition for combat documents based on BI-LSTM-CRF is proposed.We conduct an open test on a manually constructed dataset.The results show that our method effectively improves the recognition accuracy of named entities in combat documents.The precision and recall rate of our model are 91.40%and 90.43%.
关 键 词:深度学习 作战文书 命名实体识别 双向LSTM CRF
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7