拉盖尔多项式算符激发相干态的非经典性质  

Non-classical Properties of Laguerre Polynomial′s Photon Added Coherent State

在线阅读下载全文

作  者:卢道明 LU Dao-ming(College of Mechanic and Electronic Engineering,Wuyi University,Wuyishan,Fujian 354300,China)

机构地区:[1]武夷学院机电工程学院,福建武夷山354300

出  处:《光子学报》2020年第4期243-249,共7页Acta Photonica Sinica

基  金:福建省自然科学基金(No.2015J01020)。

摘  要:将拉盖尔多项式算符作用在相干态上,构造了拉盖尔多项式算符激发相干态.利用有序算符积分技术,导出了它的归一化系数以及〈a^la^+m〉的计算表达式.采用数值计算方法,讨论了相干态相位角和平均光子数对它的非经典性质的影响.研究结果表明:一阶拉盖尔多项式算符激发相干态呈现出压缩效应、反聚束效应、亚泊松分布和Wigner函数负性等量子特性,并且相干态的相位角对它的量子特性有重要影响;另一方面,随相干态平均光子数增大,它的反聚束效应和亚泊松分布性质逐渐减弱,压缩效应和Wigner函数的负性却先增强,而后又逐渐减弱.Laguerre polynomial′s photon added coherent state is constructed by operation of Laguerre polynomial′s photon added operator on coherent state.By the technique of integration within an ordered product of operators,its normalization factor and the calculation expression of〈a^la^+m〉are derived.The influences of the phase angle and the average photon number of coherent state on its non-classical properties are discussed.Numerical results show that,the first-order Laguerre polynomial′s photon added coherent state presents squeezing effect,anti-bunching effect,sub-Poissonian statistical property and negativity of Wigner function,and the phase angle of the coherent state has an important influence on its quantum properties.On the other hand,its anti-bunching effect is weakened with the increase of the average photon number of coherent state,and so is the sub-Poissonian distribution property.However,its squeezing property and the negativity of Wigner function are firstly enhanced and then gradually weakened with the increase of the average photon number of coherent state.

关 键 词:量子光学 拉盖尔多项式 相干态 非经典性质 

分 类 号:O431.2[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象