互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用  被引量:6

APPLICATION OF COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND SINGULAR VALUE ENERGY SPECTRUM IN WIND POWER GEAR FAULT IDENTIFICATION

在线阅读下载全文

作  者:张文斌[1] 江洁[1] 俞利宾[1] 郭德伟[1] 闵洁[1] 普亚松[1] Zhang Wenbin;Jiang Jie;Yu Libin;Guo Dewei;Min Jie;Pu Yasong(College of Engineering,Honghe University,Key Laboratory of Mechanical Performance Analysis and Optimization of Plateau in Yunnan Province,Mengzi 661199,China)

机构地区:[1]红河学院工学院,云南省高校高原机械性能分析与优化重点实验室,蒙自661199

出  处:《太阳能学报》2020年第2期137-143,共7页Acta Energiae Solaris Sinica

基  金:国家自然科学基金(51769007);云南省中青年学术带头人后备人才(2014HB026);云南省高校重点实验室建设计划(2018ZD)022。

摘  要:针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。Aiming at the problem of effective fault pattern recognition of wind turbine gear system,a fault recognition method based on complementary ensemble empirical mode decomposition and singular value energy spectrum was proposed. The non-stationary signals of gears were decomposed into a finite number of stationary intrinsic mode functions by CEEMD,and the initial feature vector matrix was formed. The singular value decomposition of the matrix was carried out and the singular value energy spectrum distribution of wind power gears under different working conditions was obtained.The feature vector was constructed with the singular value energy spectrum as the element,and the vibration under different working conditions was calculated. The grey relevance degree of dynamic signal was used to judge the fault type of gear. The example showed that the proposed method can be effectively applied to the fault diagnosis of wind turbine gear system.

关 键 词:故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象