基于三通道2D-CNN的逆变器功率管开路故障诊断方法  被引量:5

A Diagnostic Technique for Open-switch Fault of Inverters Based on Three-channel 2D-CNN

在线阅读下载全文

作  者:商蕾[1] 武美君 高海波[1] 林治国[1] 何业兰[1] 陈亚杰 SHANG Lei;WU Mei-jun;GAO Hai-bo;LIN Zhi-guo;HE Ye-lan;CHEN Ya-jie(School of Energy and Power Engineering,Wuhan University of Technology,Wuhan 430063,China;Shanghai Marine Diesel Engine Research Institute,Shanghai 200000,China)

机构地区:[1]武汉理工大学能源与动力工程学院,武汉430063 [2]中国船舶重工集团第七一一研究所,上海200000

出  处:《船海工程》2020年第1期78-82,共5页Ship & Ocean Engineering

基  金:国家自然科学基金重点项目(U1709215);国家自然科学基金(51579200);中央高校基本科研业务资助费(2018Ⅲ053GX)。

摘  要:针对逆变器功率管开路故障的诊断精度较低问题,对三相电压源型逆变器采用卷积神经网络的方法由现有故障数据训练得到故障识别模型,将不同类别故障对应的逆变器输出侧三相电流信号作为数据集,应用二维卷积神经网络并采用3个通道分别训练三相电流信号,采用Adam优化算法并引入dropout深度学习技巧及自适应学习速率防止模型过拟合,与SVM、KNN、DNN等方法的结果对比表明,该方法可明显提高逆变器功率管开路故障的诊断精度。In order to improve the diagnostic accuracy of the open-switch fault of the inverter,the three-phase voltage source inverter was taken as the research object.The fault recognition model was obtained by using the convolution neural network method to learn the fault data.The three-phase output current signals of the inverter were collected corresponding to different types of faults as a data set.The two-dimensional convolution neural network was applied and three channels were used to train the three-phase current signal.Using the Adam optimization algorithm,the depth learning technique and adaptive learning rate were introduced to prevent over-fitting of the model.The comparison between the proposed method and SVM,KNN,DNN showed that this method obviously improves the diagnostic accuracy of the open-switch fault of inverter.

关 键 词:开路故障 故障诊断 逆变器 卷积神经网络 深度学习 

分 类 号:U665.26[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象