Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots  被引量:4

Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots

在线阅读下载全文

作  者:Ling-Hong Xiong Jia-Wei Tu Ya-Nan Zhang Ling-Ling Yang Ran Cui Zhi-Ling Zhang Dai-Wen Pang 

机构地区:[1]College of Chemistry and Molecular Sciences,State Key Laboratory of Virology,Institute for Advanced Studies,and Wuhan Institute of Biotechnology,Wuhan University,Wuhan 430072,China [2]State Key Laboratory of Medicinal Chemical Biology,Tianjin Key Laboratory,of Biosensing and Molecular Recognition,Research Center for Analytical Sciences,and College of Chemistry,Nankai University,Tianjin 300071,China

出  处:《Science China Chemistry》2020年第4期448-453,共6页中国科学(化学英文版)

基  金:the National Natural Science Foundation of China(21535005,91859123,21705111).

摘  要:Cell-derived microvesicles(MVs) are secreted from almost all kinds of mammalian cells into the extracellular space, and play crucial roles in intercellular communication and transporting biomolecules between cells. However, there is a great challenge for visualizing and monitoring of MVs’ bio-behaviors due to the limitations of existing labeling methods. Herein, we report the first paradigm of designer cell-self-implemented labeling of MVs secreted from living mammalian MCF-7 cells in situ using the intracellular-synthesized fluorescent quantum dots(QDs) during the formation of MVs. By elaborately coupling intracellular biochemical reactions and metabolism pathways, the MCF-7 cells can be illuminated brightly by intracellular-biosynthesized fluorescent CdSe QDs. Simultaneously, intracellular-synthesized QDs can be in situ encapsulated by the secreted MVs budding from the plasma membrane of the fluorescing cells to label the MVs with an efficiency of up to 89.9%. The whole labeling process skillfully combines designer precise cell-tuned intricate synthesis of CdSe QDs with mild in-situ labeling via cell-selfimplementation just after feeding the cell with suitable chemicals, which is structure-or function-nondestructive and much more straightforward and milder than those by chemical conjugation or indirect encapsulation with conventional fluorogenic labels.Cell-derived microvesicles(MVs) are secreted from almost all kinds of mammalian cells into the extracellular space, and play crucial roles in intercellular communication and transporting biomolecules between cells. However, there is a great challenge for visualizing and monitoring of MVs’ bio-behaviors due to the limitations of existing labeling methods. Herein, we report the first paradigm of designer cell-self-implemented labeling of MVs secreted from living mammalian MCF-7 cells in situ using the intracellular-synthesized fluorescent quantum dots(QDs) during the formation of MVs. By elaborately coupling intracellular biochemical reactions and metabolism pathways, the MCF-7 cells can be illuminated brightly by intracellular-biosynthesized fluorescent CdSe QDs. Simultaneously, intracellular-synthesized QDs can be in situ encapsulated by the secreted MVs budding from the plasma membrane of the fluorescing cells to label the MVs with an efficiency of up to 89.9%. The whole labeling process skillfully combines designer precise cell-tuned intricate synthesis of CdSe QDs with mild in-situ labeling via cell-selfimplementation just after feeding the cell with suitable chemicals, which is structure-or function-nondestructive and much more straightforward and milder than those by chemical conjugation or indirect encapsulation with conventional fluorogenic labels.

关 键 词:in SITU LABELING live CELL synthesis cell-derived MICROVESICLES quantum dot cell-self-implementation 

分 类 号:Q25[生物学—细胞生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象