检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张瑞华[1] ZHANG Ruihua(School of Physics and Information Engineering,Jianghan University,Wuhan 430000,China)
机构地区:[1]江汉大学物理与信息工程学院,武汉430000
出 处:《湖北民族大学学报(自然科学版)》2020年第1期102-106,120,共6页Journal of Hubei Minzu University:Natural Science Edition
基 金:国家自然科学基金项目(61575085);湖北省教育厅教学研究项目(2016281);武汉市教育局教学研究项目(2017086).
摘 要:为实现对粘连细胞图像的分割,将Bayes分类器和KNN分类器引入到水平集外部速度函数的设计中,两种分类器轮流作用,无需设定阈值便能产生水平集驱动力.算法将Shi模型的双链表和C-V模型的全局分割相结合,以加快曲线演化.将目标与背景的类内平均距离引入到OTSU阈值法的阈值选择函数中,对OTSU法进行了改进.试验结果表明,相较于水平集法和阈值法,该算法对复杂粘连细胞的分割效果更好,在细胞图像分割中具备一定的有效性和可行性.Due to the deficiency of fast level set edge detection method that requires manual setting of threshold value to obtain the driving force required by curve evolution,the method of pattern classification is introduced into the design of external velocity function.The bayesian classifier and the minimal neighbor classifier work alternately to generate the external driving force needed for curve evolution.The algorithm combines Shi model′s double-linked list with c-v model′s global segmentation to promote the curve′s rapid evolution.The OTSU method is improved by the average intra-class distance between the target and the background is introduced into the threshold selection function of OTSU.A large number of experimental results show that this algorithm has better segmentation accuracy and shorter running time.Compared with several classical level set segmentation algorithms and threshold method,the proosed algoritnm has a certain effectiveness and feasibisity in complex cell image segmentation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术] P37[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40