Deep Learning and Time Series-to-Image Encoding for Financial Forecasting  被引量:9

在线阅读下载全文

作  者:Silvio Barra Salvatore Mario Carta Andrea Corriga Alessandro Sebastian Podda Diego Reforgiato Recupero 

机构地区:[1]Department of Mathematics and Computer Science,University of Cagliari,Cagliari 09121,Italy

出  处:《IEEE/CAA Journal of Automatica Sinica》2020年第3期683-692,共10页自动化学报(英文版)

基  金:supported by the“Bando Aiuti per progetti di Ricerca e Sviluppo-POR FESR 2014-2020-Asse 1,Azione 1.1.3.Project AlmostAnOracle-AI and Big Data Algorithms for Financial Time Series Forecasting”。

摘  要:In the last decade,market financial forecasting has attracted high interests amongst the researchers in pattern recognition.Usually,the data used for analysing the market,and then gamble on its future trend,are provided as time series;this aspect,along with the high fluctuation of this kind of data,cuts out the use of very efficient classification tools,very popular in the state of the art,like the well known convolutional neural networks(CNNs)models such as Inception,Res Net,Alex Net,and so on.This forces the researchers to train new tools from scratch.Such operations could be very time consuming.This paper exploits an ensemble of CNNs,trained over Gramian angular fields(GAF)images,generated from time series related to the Standard&Poor's 500 index future;the aim is the prediction of the future trend of the U.S.market.A multi-resolution imaging approach is used to feed each CNN,enabling the analysis of different time intervals for a single observation.A simple trading system based on the ensemble forecaster is used to evaluate the quality of the proposed approach.Our method outperforms the buyand-hold(B&H)strategy in a time frame where the latter provides excellent returns.Both quantitative and qualitative results are provided.

关 键 词:Convolutional neural networks(CNNs) ENSEMBLE of CNNS FINANCIAL forecasting Gramian ANGULAR fields(GAF)imaging 

分 类 号:TN919.81[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程] F831.53[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象