CNNS

作品数:123被引量:368H指数:10
导出分析报告
相关作者:张蕾翁贻方闵顺耕熊艳梅王卫星更多>>
相关机构:山东胜利职业学院东南大学贵州大学浙江工业大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金上海市自然科学基金北京市自然科学基金中央高校基本科研业务费专项资金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
《Journal of Computer and Communications》2025年第2期155-171,共17页Ravi Teja Potla 
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr...
关键词:Multi-Model AI Deep Learning Natural Language Processing (NLP) Explainable AI (XI) Federated Learning Cyber Threat Detection LSTM CNNS 
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks
《Journal of Rock Mechanics and Geotechnical Engineering》2025年第1期106-125,共20页Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...
关键词:Deep learning(DL) Image analysis Image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images 
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks
《Journal of Rock Mechanics and Geotechnical Engineering》2024年第11期4769-4781,共13页Tongwei Zhang Shuang Li Huanzhi Yang Fanyu Zhang 
supported by the National Key R&D Program of China (Grant No.2022YFC3003401);the National Natural Science Foundation of China (Grant Nos.42041006 and 42377137).
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ...
关键词:Soil structure Constrained modulus Discrete element model(DEM) Convolutional neural networks(CNNs) Evaluation of error 
A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries
《Computers, Materials & Continua》2024年第11期2685-2708,共24页Tao Yan Javed Rashid Muhammad Shoaib Saleem Sajjad Ahmad Muhammad Faheem 
funded by the Academy of Finland and the University of Vassa,Finland.
Electricity is essential for keeping power networks balanced between supply and demand,especially since it costs a lot to store.The article talks about different deep learning methods that are used to guess how much g...
关键词:Green energy advanced predictive techniques convolutional neural networks(CNNs) gated recurrent units(GRUs) deep learning for electricity prediction green-electrical production ensemble technique 
跨模态情感计算在混合式学习中的应用
《电脑知识与技术》2024年第32期159-161,共3页孙珠婷 张运波 符晓芳 
海南省高等学校教育教学改革项目(项目编号:Hnjgzc2023-28、Hnjg2022-90);三亚市院地科技合作项目(项目编号:2017YD12);2023年海南热带海洋学院校级教育教学改革项目(项目编号:RHYjg2023-24)。
在高校混合式学习模式下,线上自主探究结合线下协作学习能够收集到学习过程数据。这些数据对于分析学习者的情感状态具有重要意义,而情感状态往往是影响学习表现和结果的关键因素。情感计算基于人工智能技术,通过阿里云提供的物联网(IoT...
关键词:情感计算 跨模态 物联网 CNNS 混合式学习 
基于机器视觉的智能仓储管理系统设计与实现
《信息记录材料》2024年第10期88-90,共3页崔露匀 
随着智能仓储需求的不断增加,有效的货物管理系统成为研究的热点。本文旨在通过机器视觉技术实现对仓库货物的自动识别与计数,提高仓储管理的效率和准确性。采用卷积神经网络(convolutional neural networks, CNNs)技术对货物的识别与...
关键词:机器视觉 卷积神经网络(CNNs) 仓储管理 货物计数 
Efficient Vision Transformers for Autonomous Off-Road Perception Systems
《Journal of Computer and Communications》2024年第9期188-207,共20页Max H. Faykus III Adam Pickeral Ethan Marquez Melissa C. Smith Jon C. Calhoun 
The development of autonomous vehicles has become one of the greatest research endeavors in recent years. These vehicles rely on many complex systems working in tandem to make decisions. For practical use and safety r...
关键词:Semantic Segmentation Off-Road Vision TRANSFORMERS CNNS Autonomous Driving 
A deep learning-based approach for flow field prediction in a dual-mode combustor
《Propulsion and Power Research》2024年第2期178-193,共16页Chen Kong Ziao Wang Fuxu Quan Yunfei Li Juntao Chang 
supported by the National Natural Science Foundation of China (Grant No.11972139 and 52125603);the Fundamental Research Funds for the Central Universities (HIT.BRET.2021006 and FRFCU5710094620).
Accurate acquisition of the distribution offlow parameters inside the supersonic combustor is of great significance for hypersonicflight control.It is an interesting attempt to introduce a data-driven model to a super...
关键词:Flowfield prediction Deep learning(DL) Convolutional neural networks(CNNs) Data-driven model Dual-mode combustor Variable geometry combustor 
Classification with Convolutional Neural Networks in MapReduce
《Journal of Computer and Communications》2024年第8期174-190,共17页Min Chen 
Deep learning (DL) techniques, more specifically Convolutional Neural Networks (CNNs), have become increasingly popular in advancing the field of data science and have had great successes in a wide array of applicatio...
关键词:Distributed System Image Classification CNNS MAPREDUCE OVERFITTING 
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks被引量:2
《IEEE/CAA Journal of Automatica Sinica》2024年第4期982-995,共14页Tao Wang Qiming Chen Xun Lang Lei Xie Peng Li Hongye Su 
the National Natural Science Foundation of China(62003298,62163036);the Major Project of Science and Technology of Yunnan Province(202202AD080005,202202AH080009);the Yunnan University Professional Degree Graduate Practice Innovation Fund Project(ZC-22222770)。
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b...
关键词:Convolutional neural networks(CNNs) deep learning image processing oscillation detection process industries 
检索报告 对象比较 聚类工具 使用帮助 返回顶部