检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘紫东 卢文喜[1,2] 范越 李久辉 王涵[1,2] PAN Zi-dong;LU Wen-xi;FAN Yue;LI Jiu-hui;WANG Han(Key Laboratory of Groundwater Resources and Environment Ministry of Education,Jilin University,Changchun 130012,China;College of New Energy and Environment,Jilin University,Changchun 130012,China)
机构地区:[1]吉林大学地下水与资源环境教育部重点实验室,吉林长春130012 [2]吉林大学新能源与环境学院,吉林长春130012
出 处:《中国环境科学》2020年第4期1698-1705,共8页China Environmental Science
基 金:国家自然科学基金资助项目(41672232)。
摘 要:以抚顺市某煤矸石堆放场为研究区,根据研究区的实际条件建立地下水污染质运移模拟模型,预测地下水污染质未来时空变化特征.基于正演预报结果构建了假想例子,应用模拟-优化方法对地下水污染源源强及场地的渗透系数进行反演识别.为减小优化模型反复调用模拟模型所产生的计算负荷,分别采用Kriging方法和BP神经网络方法建立了模拟模型的替代模型.最后运用模拟退火法求解优化模型,得到反演识别结果.研究表明:应用Kriging方法建立的替代模型输出结果的平均相对误差为0.3%;应用BP神经网络方法建立替代模型的输出结果平均相对误差为1.5%,应用两种替代模型对污染源源强识别的相对误差均小于0.5%,对场地两个参数分区渗透系数识别的相对误差均不大于5%.综上,应用Kriging方法建立的替代模型精度高于BP神经网络方法,利用基于两种替代模型的模拟-优化方法对污染源源强和渗透系数进行同步识别精度可以满足实际需求,是有效可行的.A coal gangue pile in Fushun City was selected as the study area,and the groundwater numerical simulation model for this area was established based on physical condition.After that,we applied the model in predicting possible spatial and temporal variation of groundwater pollutant in research area.Based on forward modelling,a hypothetical example was designed to explore the application of simulation-optimization method and simultaneously carried out inverse identification of groundwater pollution sources and model parameters.The Kriging method and BP Neural Network method were proposed to establish a surrogate model of the groundwater numerical model so as to reduce the computational load caused by the repeated invocation of the simulation model by the optimization model,and the surrogate model was then integrated to simulation-optimization model where simulated annealing method was used.The study reached the following conclusions:As the surrogate model of the simulation model established by Kriging method,the mean relative error of the output concentration is 0.3%,by contrast with 1.5%with BP Neural Network method.The identification error of the release intensity of pollution source with two methods are both below 0.5%,and the identification error of hydraulic conductivity both partitions is no larger than 5%.Above all,the accuracy of surrogate model established by Kriging method is higher than BP neural network method.It is proved that the inverse identification by using the simulation-optimization method based on two surrogate models is effective and accurate.
关 键 词:污染源反演识别 模拟-优化方法 替代模型 KRIGING方法 BP神经网络方法
分 类 号:X523[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4