检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘小雍 方华京 陈孝玉 LIU Xiao-yong;FANG Hua-jing;CHEN Xiao-yu(College of Engineering,Zunyi Normal University,Zunyi Guizhou 563006,China;School of Automation,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)
机构地区:[1]遵义师范学院工学院,贵州遵义563006 [2]华中科技大学自动化学院,湖北武汉430074
出 处:《控制理论与应用》2020年第3期560-573,共14页Control Theory & Applications
基 金:国家自然科学基金项目(61473127);贵州省科技计划项目(黔科合基础[2018]1179,黔科合LH字[2016]7002号,黔科合LH字[2016]7004号);贵州省教育厅科技人才成长项目(黔教合KY字[2016]254);贵州省高层次创新人才项目([2017]19)资助.
摘 要:针对来自模型结构、参数以及测量数据的不确定性等因素,传统的辨识方法获取的是确定性数学模型的点输出,其鲁棒性差,易受外界干扰.因此,采用区间输出比点输出更易于实际问题的研究.基于复杂系统的不确定性测量数据以及系统参数的不确定性,提出了最优区间回归模型辨识的一种新方法,该方法将逼近误差的L∞范数思想与结构风险最小化理论相结合,建立求解区间模型的最优化问题,应用线性规划独立求解区间模型的上界和下界模型.该方法在保证模型辨识精度的同时,其泛化性能得到进一步提高.实验分析表明,提出的方法对来自噪声以及参数不确定性的数据,可以从区间模型的辨识精度和泛化性能之间取其平衡.Aiming at the characteristics from a family of uncertain nonlinear functions or the systems with uncertain physical parameters, the problem of the conventional nonlinear system modeling, referred to as the deterministic modeling method whose output is a single value(or a point output), is prone to produce a poor robustness and is subject to external disturbance. This paper proposes a novel method for identifying optimal interval regression model(OIRM) with sparsity only based on the uncertain measurements of complex system. The OIRM, differently from standard deterministic models, is composed of upper regression model(URM) and lower regression model(LRM), and returns an interval output as opposed to a point output. The method combines sparsity stemming from the idea of structural risk minimization(SRM) principle,and optimality using L∞-norm of approximation errors with some notions from linear programming(LP) problem. The optimization problems corresponding to URM and LRM with constraints in a form of convex inequality and linear equality are independently solved by LP. Finally, the equilibrium between modeling accuracy and generalization performance of the proposed OIRM are demonstrated by the experimental cases using the two indices, the fractions of utilised support vectors(SVs) and root mean square error(RMSE).
关 键 词:结构风险最小化 不确定性分析 逼近误差的L∞范数优化 最优区间回归模型 线性规划
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15