基于信号循环平稳特征的神经网络频谱感知算法  被引量:3

Spectrum sensing algorithm based on neural networks with cyclic autocorrelation characteristics

在线阅读下载全文

作  者:张士兵[1,2] 张硕 陈家俊 张晓格 ZHANG Shihing;ZHANG Shuo;CHEN Jiajun;ZHANG Xiaoge(School of Information Science and Technology,Nantong Univereity,Nantong 226019,China;Nantong Research Institute for Advanced Communication Technology,Nantong 226019,China)

机构地区:[1]南通大学信息科学技术学院,江苏南通226019 [2]南通先进通信技术研究院,江苏南通226019

出  处:《南京邮电大学学报(自然科学版)》2020年第2期7-12,共6页Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition

基  金:国家自然科学基金(61871241,61771263);南通大学-南通智能信息技术联合研究中心开放课题(KFKT2017A05)资助项目。

摘  要:高效、准确的频谱感知是实现认知无线网络的重要前提。文中针对低信噪比环境下的认知无线网络频谱感知问题,研究基于主用户调制信号循环平稳特征的神经网络频谱感知算法。在该算法中,将信号循环平稳特征的感知网络与神经网络的特征输入层有机结合,构造一个全连接的人工神经网络,并在神经网络的输出层连接一个Soft-max网络,对频谱进行判决。该算法不需要预设频谱判决门限,有效降低了噪声波动对频谱感知性能的影响。仿真结果表明,在低信噪比和噪声波动等复杂信道环境下,该算法具有良好的频谱感知性能。The efficient and accurate spectrum sensing is important for implementing cognitive radio networks.The spectrum sensing of cognitive radio networks in the low signal to noise ratio(SNR)is studied and a novel spectrum sensing algorithm is proposed based on the cyclostationary characteristics of the modulated signal of primary user and neural networks.In the algorithm,a fully connected artificial neural network is constructed by combining the sensing network of the cyclostationary characteristics with the input layer of the neural network.The output layer of the neural network is connected to a Soft-max network for the spectrum decision.The algorithm does not need to preset the threshold of the spectrum decision,thus reducing the effect of noise fluctuation on the spectrum sensing performance.Simulation results show that the algorithm has good performance in the envirenment with the low SNR and the noise fluctuation.

关 键 词:认知网络 频谱感知 循环自相关 人工神经网络 

分 类 号:TN911.23[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象