检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张涛[1,2] 王帅[1,2] 刘兴华 ZHANG Tao;WANG Shuai;LIU Xinghua(School of Instrument Science and Engineering,Southeast University,Nanjing 210096,China;Key Laboratory of Micro-inertial Instrument and Advanced Navigation Technology,Ministry of Education,Southeast University,Nanjing 210096,China)
机构地区:[1]东南大学仪器科学与工程学院,南京210096 [2]微惯性仪表与先进导航技术教育部重点实验室,南京210096
出 处:《中国惯性技术学报》2020年第1期8-14,共7页Journal of Chinese Inertial Technology
基 金:惯性技术重点实验室基金(614250607011709);水下信息与控制重点实验室基金(614221805051809);中央高校基本科研业务费(2242020k1G009,2242019K40041);江苏绿色船舶技术重点实验室基金(2019Z01)。
摘 要:针对船体变形测量系统中模型不确定以及未知噪声影响导致的误差问题,分析并推导了模型偏差对滤波估计的影响,提出一种基于姿态匹配的强跟踪最大互相关熵卡尔曼滤波(STMCKF)算法,用于船体变形估计。该算法采用姿态匹配,基于两套惯性系统的姿态信息确立滤波观测量并建立线性量测方程,通过自适应在线调整多个渐消因子对多个数据通道进行渐消,减小模型失配导致的误差,并设计基于最大互相关熵准则为最优准则的滤波算法,减小量测过程中受到的非高斯噪声产生的误差。最后,在模型不匹配及噪声不确定的条件下进行了仿真验证。仿真结果表明,与传统卡尔曼滤波相比,变形估计精度提高10%~30%,提高了系统鲁棒性和环境适应性。Aiming at the errors caused by model uncertainty and unknown noise in the ship deformation measurement system,the influence of model deviation on the filtering estimation is derived and analyzed.A Strong Tracking Maximum Correntropy Kalman Filter(STMCKF)algorithm based on attitude matching is proposed for ship deformation estimation.Attitude matching is used in the algorithm.A filtering observation is established and a linear measurement equation is established based on the attitude information of two inertial systems.The error caused by model mismatch can be reduced by adaptively adjusting multiple fading factors online to fade multiple data channels.The filter algorithm based on the maximum cross-correlation entropy criterion is designed to reduce the error caused by non-Gaussian noise.Finally,the simulations are carried out under the conditions of mismatch model and uncertainty noise.The results show that,compared with the traditional kalman filter,the accuracy of deformation estimation is improved 10%~30%,and the system robustness and environmental adaptability are improved.
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7