检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡强 屈蔷[1] 何鑫 HU Qiang;QU Qiang;HE Xin(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
机构地区:[1]南京航空航天大学自动化学院,江苏南京211106 [2]南京航空航天大学计算机科学与技术学院,江苏南京211106
出 处:《应用科技》2020年第2期35-43,共9页Applied Science and Technology
基 金:江苏省科技成果转化项目(BA2015052).
摘 要:道路检测相关研究多基于KITTI等车道公开数据集展开,由于车道与人行道存在颜色、材质和周围环境等差异,准确地检测出人行道区域成为一个需要解决的问题。本文将应用场景设置为室外人行道,提出了一种改进的基于多特征融合的人行道检测算法。首先使用SLIC超像素算法获取超像素图以减少噪声干扰和后续训练维度;然后计算各超像素块特征,利用新的Gabor滤波器纹理提取方法降低时间复杂度,并加入基于主成分分析(PCA)的光照不变空间特征和三维的深度梯度特征提高检测准确度,选用Adaboost分类器对融合的特征向量进行训练并预测人行道区域;最后采用马尔可夫随机场对分割结果进行优化。本方法是通用的,不依赖于道路外观和结构的先验,在创建的人行道数据集上进行实验,证明了该算法的有效性。Research on road detection is mostly based on open datasets of lane such as KITTI.Due to the differences in color,material and surrounding environment between lanes and sidewalks,accurate detection of the sidewalk area is also a problem that needs to be solved.Therefore,the application scenario is set as an outdoor sidewalk in this paper,proposing an improved sidewalk detection algorithm based on multi-feature fusion.Firstly,SLIC super-pixel algorithm is used to obtain super-pixel image to reduce the noise interference and follow-up training dimension.Then,calculating each super-pixel block feature,a new texture extraction method based on Gabor filter is proposed to reduce the time complexity,and the principal components analysis(PCA)-based illumination invariant spatial features and threedimensional depth gradient features are added to improve detection accuracy.The Adaboost classifier is used to train the fused feature vectors and predict the sidewalk area.Finally,the Markov random field is used to optimize the segmentation results.This method is universal and does not depend on a priori road appearance and structure.The validity of the algorithm is verified by the experiment based on the created sidewalk datasets.
关 键 词:人行道检测 超像素 Gabor纹理 光照不变空间 三维深度 多特征融合 机器学习 马尔可夫随机场
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33