基于PSO-BP神经网络的船体分段任务包工时定额模型  被引量:9

Man-hour Quota Model of Hull Block Working Package Based on PSO-BP Neural Network

在线阅读下载全文

作  者:习立洋 吴娜 吉永军 周宏[1] 蒋志勇[1] 刘建峰 XI Liyang;WU Na;JI Yongjun;ZHOU Hong;JIANG Zhiyong;LIU Jianfeng(School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Jiangsu Zhengjiang 212003,China;Shanghai Waigaoqiao Shipbuilding Co.,Ltd.,Shanghai 200137,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

机构地区:[1]江苏科技大学船舶与海洋工程学院,江苏镇江212003 [2]上海外高桥造船有限公司,上海200137 [3]上海交通大学机械与动力工程学院,上海200240

出  处:《船舶工程》2020年第2期135-141,共7页Ship Engineering

基  金:“船体分段智能车间制造执行管控技术”项目(工信部装函2017[614]号)。

摘  要:为解决船体分段任务包工时定额的计算过度依赖线性公式而忽略工时定额与工艺参数之间的非线性关系的问题,提高工时定额计算的效率和精确度,将PSO-BP神经网络技术应用到船体分段任务包工时定额中。通过对影响船体分段中间产品额定工时的工艺参数进行分析,建立多输入单输出的PSO-BP神经网络模型,并应用实际数据对PSO-BP神经网络进行训练,测试仿真结果与实际值之间的误差在允许范围内。验证结果表明,采用PSO-BP神经网络建立船体分段任务包工时定额模型,能对任务包作业工时进行准确预测。In order to solve the problem of over-reliance on the linear formula to calculate the quota man-hour of hull block working package and neglect the non-linear relationship between man-hour quota and process parameters, at the same time to improve the calculation efficiency and accuracy of man-hour quota. The PSO-BP neural network technology is applied to calculate the man-hour quota of hull block working package, and the PSO-BP neural network model with multi-input and single-output is established by analyzing the process parameters affecting the quota man-hour of the hull block intermediate product. The PSO-BP network is trained with actual data. The error between simulation results and actual values of sample test is within the allowable range. The verification results show that the PSO-BP neural network model can accurately predict the man-hour quota model of hull block working package.

关 键 词:PSO-BP神经网络 分段任务包 工时定额 

分 类 号:U661.43[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象