检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹家敏 付琦玮 周丘实 秦筱楲[2] 蔡超[1] CAO Jiamin;FU Qiwei;ZHOU Qiushi;QIN Xiaowei;CAI Chao(National Key Laboratory for Multi-spectral Information Processing Technologies,School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China;Beijing Research Institute of Mechanical and Electrical Engineering,Beijing 100074,China)
机构地区:[1]华中科技大学人工智能与自动化学院,多谱信息处理技术国家级重点实验室,武汉430074 [2]北京机电工程研究所,北京100074
出 处:《计算机工程》2020年第5期282-290,297,共10页Computer Engineering
基 金:天津市智能遥感信息处理技术企业重点实验室开放基金(2016-ZW-KFJJ-01)。
摘 要:分析并研究航迹规划软件中的飞行器操作数据特征,提出一种基于XGBoost算法和K-prototypes算法的航迹规划策略学习方法。在样本采集与分类过程中,根据约束自身特性和规划人员操作特征,将约束分为飞行器环境约束和飞行器特性相关约束,分别采用XGBoost算法和K-prototypes算法进行策略学习,并对飞行器特性相关约束做进一步细分,实现复杂约束的针对性学习及样本分类管理。当航迹不满足约束时,需将已获得的规划策略反馈给规划人员使其得到策略引导。实验结果表明,该方法能准确选取航迹规划策略并给出策略引导信息,降低规划人员的工作强度,提升交互规划效率和规划软件的智能性。This paper analyzes and studies the characteristics of aircraft operational data in flight rout planning software,proposes a learning method for route planning strategy based on the XGBoost algorithm and K-prototypes algorithm.During sample collection and classification,the features of constraints and operation of planners are analyzed,and constraints are accordingly divided into two categories:constraints of aircraft environment and constraints related to aircraft features.Relevant strategies are learnt by using the XGBoost algorithm and K-prototypes algorithm respectively.Constraints related to aircraft features are further subdivided for more specific learning of complex constraints and classified management of samples.If a flight route does not meet the constraints,the obtained planning strategies are returned to planners to provide strategic guidance.Experimental results show that the proposed method can effectively extract the flight route planning strategies and provide strategic guidance information,which reduces the workloads of planners,improving the efficiency of interactive planning and the intelligence of planning software.
关 键 词:规划策略 策略学习 样本分类 XGBoost算法 K-prototypes算法
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145