检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:米建勋 林志凯[1,2] Mi Jianxun;Lin Zhikai(College of Computer Science&Technology,Chongqing University of Posts&Telecommunications,Chongqing 400065,China;Chongqing Key Laboratory of Image Cognition,Chongqing University of Posts&Telecommunications,Chongqing 400065,China)
机构地区:[1]重庆邮电大学计算机科学与技术学院,重庆400065 [2]重庆邮电大学.图像认知重庆市重点实验室,重庆400065
出 处:《计算机应用研究》2020年第4期1252-1255,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61472055);重庆市自然科学基金资助项目(cstc2018jcyjAX0532)。
摘 要:稀疏表示分类方法在训练样本空间较大的情况下具有良好的分类效果,但是计算的时间成本较高。针对此问题,考虑构造对重构样本的l2-范数进行约束,使得重构样本中各类别分量之间的竞争加强,以起到组稀疏的效果,最后提高分类正确率。由于该方法可以直接得到闭式解,使得求解的计算成本大大减小,并且得到的系数稀疏程度与传统方法类似。在公开的人脸和物体图像数据集上和同类型方法的对比实验结果表明,该方法在复杂的条件下具有优秀的图像识别效果。Sparse representation classification(SRC)has a good performance of classification when the feature space spanned by training samples is sufficient,but the computational cost is expensive.To solve this problem of SRC,this paper considered the constraint of reconstruction samples.It introduced a group sparsity effect to enhance the competitions between different subjects in reconstruction procedure,and improved the accuracy of classification finally.Since the proposed method had a closed-form solution,the computational cost was very low.Moreover,the sparsity of the coefficient produced by the new approach was the same as that obtained by SRC.The experiment results on public face and object image datasets demonstrate that the proposed method has a good performance comparing with other same kind approaches.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.216.188