Generalized Ejiri’s Rigidity Theorem for Submanifolds in Pinched Manifolds(In memory of Professor Chaohao Gu on his 90th birthday)  

在线阅读下载全文

作  者:Hongwei XU Li LEI Juanru GU 

机构地区:[1]Center of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China [2]Department of Applied Mathematics,Zhejiang University of Technology,Hangzhou 310023,China

出  处:《Chinese Annals of Mathematics,Series B》2020年第2期285-302,共18页数学年刊(B辑英文版)

基  金:the National Natural Science Foundation of China(Nos.11531012,11371315,11301476)。

摘  要:Let Mn(n ≥ 4) be an oriented compact submanifold with parallel mean curvature in an(n + p)-dimensional complete simply connected Riemannian manifold Nn+p.Then there exists a constant δ(n, p) ∈(0, 1) such that if the sectional curvature of N satisfies■ , and if M has a lower bound for Ricci curvature and an upper bound for scalar curvature, then N is isometric to Sn+p. Moreover, M is either a totally umbilic sphere■ , a Clifford hypersurface Sm■ in the totally umbilic sphere ■, or■ . This is a generalization of Ejiri’s rigidity theorem.

关 键 词:Minimal SUBMANIFOLD Ejiri RIGIDITY theorem RICCI CURVATURE Mean CURVATURE 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象