利用改进蚁群算法的重叠社团检测分析方法  被引量:1

Novel algorithm of overlapping community detection and analysis with improved ant colony algorithm

在线阅读下载全文

作  者:许英[1] Xu Ying(School of Applied Mathematics,Xinjiang University of Finance&Economics,Urumqi 830012,China)

机构地区:[1]新疆财经大学应用数学学院,乌鲁木齐830012

出  处:《计算机应用研究》2020年第5期1375-1379,共5页Application Research of Computers

基  金:国家自然科学基金资助项目(11461063)。

摘  要:针对重叠社团检测准确率提升问题,提出了一种基于改进蚁群算法的新型重叠社团检测算法。该算法包含位置初始化、运动和后处理三个阶段,分别通过初始位置识别与标签列表存储、基于节点间相似度的启发式信息重定义、合作保持标签列表等方式,使算法在合成数据集与现实世界数据集中的重叠社团与节点检测方面具有更好的性能。实验结果表明,在合成网络与现实世界网络平台上使用不同检测算法,提出方法对重叠社团与重叠节点的检测准确率较传统检测方法更高,因而对重叠社区检测问题求解与理解网络功能结构具有重要的参考与借鉴意义。This paper proposed a new detection algorithm for overlapping communities based on ant colony algorithm to improve the detection accuracy of overlapping communities.The algorithm consisted of three stages:position initialization,motion and post-processing.The algorithm achieved better performance of overlapping communities and overlapping nodes detection in synthetic datasets and real-world datasets through initial position identification and tag list storage,heuristic information redefinition based on similarity between nodes,and cooperative tag list preservation.The detection performance of different detection algorithms on synthetic and real world network platforms shows that the proposed method based on improved ant colony algorithm has good accuracy and analysis performance.The method can be used for reference in solving the current overlapping community detection problem and understanding the functional structure of the network.

关 键 词:重叠社团与节点检测 改进蚁群算法 启发式信息重定义 标签列表迭代更新 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象