检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:艾婷 史晋芳[1,2] 向伟 AI Ting;SHI Jin-fang;XIANG Wei
机构地区:[1]西南科技大学制造科学与工程学院,绵阳621010 [2]特殊环境机器人技术四川省重点实验室,绵阳621010
出 处:《制造业自动化》2020年第5期54-56,60,共4页Manufacturing Automation
基 金:国防科工局核能开发科研项目([2016]1295)。
摘 要:针对玻壳缺陷检测的准确率不高的问题,提出了一种基于改进AlexNet的玻壳缺陷检测模型。该模型在AlexNet网络模型基础上,引入1×1卷积、通道洗牌卷积层和残差网络,优化了模型的结构。将改进前后的模型分别对玻壳图库随机抽取的玻壳图片进行测试,实验结果表明:改进后的模型能够识别玻壳残缝、破口、污点等缺陷,识别准确率达95.9%。改进后的AlexNet模型在玻壳缺陷识别具有良好的适用性。
关 键 词:深度学习 卷积神经网络 AlexNet模型 玻壳检测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.165.89