检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张文成 熊静[1] 张虹 严宇 ZHANG Wencheng;XIONG Jing;ZHANG Hong;YAN Yu(School of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China)
机构地区:[1]上海工程技术大学航空运输学院,上海201620
出 处:《上海工程技术大学学报》2020年第1期34-40,共7页Journal of Shanghai University of Engineering Science
基 金:上海市科委资助项目(16DZ1201704)。
摘 要:以机组资源利用率最大作为优化目标进行机组配对研究,根据航班计划表构建航班连接网络图,基于深度优先搜索(DFS)算法产生初始配对结果,提出改进二进制粒子群优化算法(IBPSO)进行寻优.IBPSO引入指数型增长惩罚因子和基于余弦自适应惯性权重,种群进化前期采用无速度限制S形映射函数与强制性位置更新程序,后期采用正弦映射函数与非强制性位置更新程序.两组不同规模航班算例验证表明,IBPSO能克服原始算法收敛慢、迭代后期局部开发能力差的缺点,在维数增加时依然能有效提高算法寻优速度和解的质量.Taking the maximum utilization of unit resources as the optimization objective,the study of crew pairing was carried out.According to the flight schedule,the flight connection network diagram was constructed,and the initial pairing results were generated based on the depth-first search(DFS)algorithm.An improved binary particle swarm optimization(IBPSO)algorithm was proposed for optimization.The penalty factor for exponential growth and adaptive inertia weight based on cosine were introduced by IBPSO.In the early stage of population evolution,S-shaped mapping function without speed restriction and mandatory position updating program were used,and in the later stage,sine mapping function and non mandatory position updating program were used.Two groups of flight examples with different scales show that IBPSO can overcome the shortcomings of slow convergence of original BPSO and poor local development ability in the later stage of iteration,and can effectively improve the speed of optimization and the quality of solution while increasing the dimension.
关 键 词:航空运输 机组配对 机组资源利用率 深度优先搜索算法 二进制粒子群优化算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222