检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李丽 LI Li(College of Information Science and Engineering,Hunan University,Changsha 410082,China;Hunan Posts and Telecommunications College,Changsha 410015,China)
机构地区:[1]湖南大学信息科学与工程学院,湖南长沙410082 [2]湖南邮电职业技术学院,湖南长沙410015
出 处:《现代电子技术》2020年第10期83-85,共3页Modern Electronics Technique
基 金:湖南省教育厅科学研究项目(15C1017)。
摘 要:针对移动通信网络优化过程中异常信号的识别控制较为困难,而传统的异常信号识别方法,仅针对信号样本训练与测试,存在无法复现、维护难度大等问题。文中提出一种通信信号多特征提取与支持向量机算法融合相的识别控制优化算法。在对异常信号的比对过程中,根据移动通信的特性建立准确的信号模型,并使用支持向量机对大规模数据进行分类并实现识别控制。实验结果表明,与两种传统方法的相比,所提算法对信号有较强的识别能力,从而达到预期的目标。In the process of mobile communication network optimization,it is difficult to identify and control the abnormal signals. However,the traditional abnormal signal identification method only aims at the training and testing of signal samples,and is unable to reproduce and difficult to maintain. A recognition control optimization algorithm based on the fusion of multifeature extraction of communication signals and support vector machine algorithm is proposed. In the process of comparing abnormal signals,the accurate signal model is established according to the characteristics of mobile communication,and the support vector machine is used to classify large-scale data and realize the recognition control. The experimental results show that,in comparison with the two traditional methods,the algorithm has a strong ability to recognize signals,so as to achieve the expected target.
关 键 词:网络优化 信号识别 深度神经网络 通信建模 多特征提取 信号控制 数据分类
分 类 号:TN926-34[电子电信—通信与信息系统] TP393[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.174