带随机网络时滞补偿的测功机动态负载模拟  被引量:6

Dynamic Load Emulation of Dynamometer withCompensation for Stochastic Network Time-delay

在线阅读下载全文

作  者:马瑞海 王丽芳[1,2] 张俊智[4] 何承坤 Ma Ruihai;Wang Lifang;Zhang Junzhi;He Chengkun(Key Laboratory of Power Electronics and Electric Drives, Chinese Academy of Sciences, Beijing 100190;Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190;University of Chinese Academy of Sciences, Beijing 100049;Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing 100084)

机构地区:[1]中国科学院电力电子与电气驱动重点实验室,北京100190 [2]中国科学院电工研究所,北京100190 [3]中国科学院大学,北京100049 [4]清华大学,汽车安全与节能国家重点实验室,北京100084

出  处:《汽车工程》2020年第5期700-708,共9页Automotive Engineering

基  金:国家重点研发计划(2016YFB0101402)资助。

摘  要:本文研究了控制网络传输时滞影响下测功机加载控制算法。首先,针对一款前驱电动汽车,建立车辆与台架动力学动态耦合模型和服从均匀分布的随机网络诱导延时数学模型。其次,为改善测功机网络控制系统负载模拟性能,提出了一种基于预测控制结构的随机网络诱导延时补偿算法;接着通过系统增广将随机系统跟踪控制问题转化为鲁棒镇定问题,并分析系统H∞性能,通过非线性优化问题得到系统控制增益。最后,进行了防抱死制动控制台架测试的仿真,结果表明:提出的方法可大幅提升测功机负载模拟精度。A novel dynamometer loading control algorithm is studied with consideration of the effects of control network transmission time-delay in this paper.Firstly based on a front drive electric vehicle,the dynamic coupling model for vehicle and test bench and the mathematical model for the stochastic network-induced time-delay with uniform distribution are constructed.Then,a compensation algorithm for stochastic network-induced time-delay based on predictive control structure is proposed to improve the load emulation performance of dynamometer network control system.Next,the problem of stochastic system tracking control is transformed into a robust stabilization issue by system augmentation,the H∞performance is analyzed and the system control gains are obtained through nonlinear optimization.Finally,a simulation on bench test for anti-lock braking control is conducted with a result showing that the scheme proposed can greatly enhance the load emulation accuracy of dynamometer.

关 键 词:电动汽车 测功机 负载模拟 网络控制系统 网络时滞 

分 类 号:U46[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象