检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:施晓倩 陈祺东 孙俊 冒钟杰 SHI Xiaoqian;CHEN Qidong;SUN Jun;MAO Zhongjie(Jiangsu Key Construction Laboratory of IoT Application Technology(Wuxi Taihu University),Wuxi Jiangsu 214000,China;International Joint Laboratory of Pattern Recognition and Artificial Intelligence(Jiangnan University),Wuxi Jiangsu 214000,China)
机构地区:[1]江苏省物联网应用技术重点建设实验室(无锡太湖学院),江苏无锡214000 [2]人工智能与模式识别国际联合实验室(江南大学),江苏无锡214000
出 处:《计算机应用》2020年第5期1382-1388,共7页journal of Computer Applications
摘 要:针对工程形状设计领域中带有多个约束条件的非线性设计优化问题,提出了一种自适应的基于高斯分布的量子行为粒子群优化(AG-QPSO)算法。通过自适应地调整高斯分布,AG-QPSO算法能够在搜索的初始阶段有很强的全局搜索能力,随着搜索过程的进行,算法的局部搜索能力逐渐增强,从而满足了算法在搜索过程不同阶段的需要。为了验证算法的有效性,在压力容器和张弦设计问题这两个工程约束优化问题上进行50轮独立实验。实验结果表明,在满足所有约束条件的情况下,AG-QPSO算法在压力容器设计问题上取得了5890.9315的平均解和5885.3328的最优解,在张弦设计问题上取得了0.01096的平均解和0.01096的最优解,远优于标准粒子群优化(PSO)算法、具有量子行为的粒子群优化(QPSO)算法和高斯量子行为粒子群(G-QPSO)算法等现有的算法的结果,同时AG-QPSO算法取得的结果的方差较小,说明该算法具有很好的鲁棒性。Aiming at the nonlinear design optimization problems with multiple constraints in the field of engineering shape design,an Adaptive Gaussian Quantum-behaved Particle Swarm Optimization(AG-QPSO)algorithm was proposed.By adjusting the Gaussian distribution adaptively,AG-QPSO algorithm was able to have strong global search ability at the initial stage of search process,and with the search process continued,the algorithm was able to have stronger local search ability,so as to meet the demands of the algorithm at different stages of the search process.In order to verify the effectiveness of the algorithm,50 rounds of independent experiments were carried out on the two engineering constraint optimization problems:pressure vessel design and tension string design.The experimental results show that AG-QPSO algorithm achieves the average result of 5890.9315 and the optimal result of 5885.3328 on the pressure vessel design problem,and achieves the average result of 0.01096 and the optimal result of 0.01096 on the tension string design problem,which are better than the results of the existing algorithms such as the standard Particle Swarm Optimization(PSO)algorithm,Quantum Particle Swarm Optimization(QPSO)algorithm and Gaussian Quantum-behaved Particle Swarm Optimization(G-QPSO)algorithm.At the same time,the small variance of the results obtained by AG-QPSO algorithm indicates that the algorithm is very robust.
关 键 词:量子行为粒子群优化算法 高斯概率分布 工程约束优化问题 非线性优化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.14.81