检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王博 钱蓉蓉 任文平[1] WANG Bo;QIAN Rongrong;REN Wenping(School of Information Science and Engineering,Yunnan University,Kunming 650500,China)
机构地区:[1]云南大学信息学院,昆明650500
出 处:《电讯技术》2020年第5期579-584,共6页Telecommunication Engineering
基 金:国家自然科学基金资助项目(61701433);云南省科技厅面上项目(2018FB099)。
摘 要:为保障多输入多输出窃听信道系统中信息传输的保密性,提出了一种基于机器学习的天线选择方案。首先利用机器学习解决分类问题准确率高、处理大数据高效这一优势,设计了基于奇异值分解的特征值提取、基于信干噪比的标签赋值方案,建立了k最近邻分类器和逻辑回归分类器选择最优天线最大化保密性能(可达保密速率和保密中断概率)。与传统天线选择方案相比,所提方案获得了几乎一致的保密性能,并且大幅降低了系统的选择复杂度和误比特率。For guaranteeing the confidentiality of information transmission in multiple-input multiple-out-put( MIMO) wiretap channels,a machine learning based antenna selection( AS) scheme is proposed.Firstly,the AS in MIMO wiretap channels is characterized as multiclass-classification problem.Then the advantages of machine learning is utilized to solve classification problem with high accuracy and efficient processing of big data,and the scheme is designed including singular value decomposition based feature extraction and signal-to-interference plus noise ratio( SINR) based label assignment.The k-nearest neighbors classifier and logistic regression classifier are established to select the optimal antenna to maximize the secrecy performance( the achievable secrecy rate and the secrecy outage probability). Compared with conventional AS scheme,the machine learning based scheme can almost acquire the same secrecy performance with decreasing bit error rate( BER) of the system and selection complexity by a large margin.
关 键 词:多输入多输出 物理层安全 机器学习 天线选择 k最近邻分类器 逻辑回归分类器
分 类 号:TN918[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7