检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张安安[1] 邓芳明 ZHANG Anan;DENG Fang-ming(Energy Research Institute,Jiangxi Academy of Sciences,Nanchang Jiangxi 330029,China;School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang Jiangxi 330013,China)
机构地区:[1]江西省科学院能源研究所,江西南昌330029 [2]华东交通大学电气与自动化工程学院,江西南昌330013
出 处:《计算机仿真》2020年第4期76-80,共5页Computer Simulation
基 金:国家自然科学基金(51767006);江西省重点研发计划(20181BBE50019,20181BBE58015);江西省教育厅科学技术项目(GJJ170378)。
摘 要:针对现有杆塔状态检测方案缺乏外破振动识别的现状,提出了一种基于深度学习模型的杆塔外破振动识别技术。首先获取外破条件下的输电杆塔外破振动信号和不同风激励条件下的输电杆塔振动信号,应用延时嵌陷技术对振动信号预处理,将原始信号转为二维形式后送入卷积神经网络(Convolutional Neural Network, CNN)进行特征提取,并采用相关向量机(Relevance Vector Machine, RVM)分类器实现振动模式识别;通过多次实验,确定CNN的最佳参数,再利用softmax分类器和梯度下降法对CNN的权值和阈值进行调整,最终得到高精度识别结构。仿真结果表明,提出的CNN-RVM识别模型在三种振动条件实验中准确率都高于99%,相比于国内外现有其它振动识别方案,具有高精度和高效率的优点。According to the problem of existing tower state detection scheme lacking of the identification of external vibration, this paper proposes an external vibration identification scheme of tower based on deep learning. The proposed scheme obtains the external breaking vibration signal of transmission pole and the vibration signals of transmission towers under different wind excitation conditions firstly. The vibration signals are preprocessed by adopting delay inlay technology to turn the original signal into a two-dimensional form and sent that into convolutional neural network(CNN)to feature extraction, and achieve vibration pattern recognition by employ the relevance vector machine(RVM).Through many experiments, the best parameters of CNN can be determined, and then the weights and thresholds of CNN are adjusted by softmax classifier and gradient descent method. Finally, the structure of high precision recognition can be obtained. The simulation results show that the accuracy of the proposed method is higher than 99% in the three vibration conditions. Compared with the existing vibration recognition technology of domestic and foreign steelwork towers, this model has the advantages of high precision and high efficiency.
关 键 词:杆塔振动识别 深度学习 卷积神经网络 相关向量机
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30