基于遗传算法的重型矿用自卸车车斗优化设计  被引量:4

Optimization Design of Heavy Mining Dump Truck Bucket Based on Genetic Algorithm

在线阅读下载全文

作  者:郝妮妮[1,2] 于岩 刘华伟[1] Hao Nini;Yu Yan;Liu Huawei(College of Mechanical and Electrical Engineering,Shandong University of Science and Technology,Qingdao 266590,China;Shandong Provincial Key Laboratory of Transportation and Promotion,Qingdao 266590,China)

机构地区:[1]山东科技大学机械电子工程学院,山东青岛266590 [2]山东省运输与提升重点实验室,山东青岛266590

出  处:《煤矿机械》2020年第5期4-5,共2页Coal Mine Machinery

基  金:山东省重点研发计划项目(2018GGX103011);山东省自然科学基金青年基金(ZR2016EEQ24);矿山灾害预防控制省部共建国家重点实验室培育基地开放基金(MDP C2016ZR05)。

摘  要:基于遗传算法对采用HARDOX钢板的重型矿用自卸车车斗进行优化设计,确定了自卸车车斗优化问题中的优化变量,以车斗钢板最小总体积(质量)为最优目标,根据强度要求、承载能力要求、固有频率限制等约束条件,建立了优化问题的数学模型,得到了优化后的车斗尺寸。基于遗传算法得到的车斗各板壁厚明显降低,对设计载重为290 t的车斗,经过试算,减重9.6%、柴油节约8%、轮胎节约7%、生产效率提高3%、维修维护减少15%、推土机等辅助工具减少12%,验证了遗传算法在自卸车车斗轻量化设计问题中的有效性和必要性。Based on genetic algorithm the design of heavy mining dump truck bucket using HARDOX steel plate was optimized,the optimization variables in the optimization problem of dump truck bucket were determined,and the minimum total volume(mass) of the bucket steel plate was taken as the optimal target. Based on the constraints such as strength requirements,load capacity requirements,natural frequency constraints,etc.,a mathematical model for the optimization problem was established,and the optimized bucket size was obtained. Based on the genetic algorithm,the thickness of each wall of the bucket is significantly reduced. For a dump truck bucket with a design load of 290 t,after trial calculations,the weight is reduced by 9.6%,the diesel is saved by 8%,the tire is saved by 7%,the production efficiency is increased by 3%,and maintenance is reduced by 15%,auxiliary tools such as bulldozers reduced by 12%,which verified the effectiveness and necessity of genetic algorithm in the lightweight design of dump truck bucket.

关 键 词:遗传算法 重型矿用自卸车 车斗 优化设计 

分 类 号:TD57[矿业工程—矿山机电] U465.11[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象