检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林嘉斌 李宏 董自明[1] 赵智慧[1] LIN Jiabin;LI Hong;DONG Ziming;ZHAO Zhihui(School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China)
机构地区:[1]内蒙古大学数学科学学院,内蒙古呼和浩特010021
出 处:《应用数学》2020年第2期275-294,共20页Mathematica Applicata
基 金:Supported by the National Natural Science Foundation of China(11761053);Natural Science Fund of Inner Mongolia Autonomous Region(2017MS0107,2018MS01020,2019BS01010);CaoYuanYingCai Projection of Inner Mongolia,Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Regions(NJYT-17-A07)。
摘 要:将时空有限元方法和流线扩散迎风Petrov-Galerkin方法(SUPG)相结合,构造对流扩散反应方程的一种全离散稳定化时空有限元方法.和传统的SUPG方法不同,本文为得到高精度尤其是时间高精度格式,在时空两个方向同时使用离散变分形式.该类格式曾被工程师用来数值模拟一些实际问题,但很难看到相关文献的理论分析证明.本文时间方向利用Gauss-Legendre和Gauss-Lobatto积分,并和有限元方法相结合,证明数值解的稳定性和误差估计.不但去掉时空网格的限制条件,而且将时间和空间变量解耦,克服了时空有限元方法在建立格式时由于时空变量统一处理而导致的理论分析和数值模拟中的高维度难度和复杂性,本文不需要引入对偶问题的证明思路丰富了稳定化SUPG时空有限元方法的理论.A kind of fully discrete version of stabilized space-time finite element approximate scheme for the convection-diffusion-reaction equations is established by combining the space-time finite element discretization with the streamline upwind Petrov-Galerkin method(SUPG).The formulations discussed in this paper is different from traditional SUPG method.The discrete variation forms were used in both time and space directions in order to derive high order accuracy schemes,especially high accuracy in time.The theoretical proofs of this kind of scheme were difficult to find in relative references,although there are some simulations in practical applications studied by engineers.We focus on presenting the proof of stability and error estimates of the approximate solutions.The techniques of combining the Gauss-Legendre and Gauss-Lobatto integration rules with the finite element method was used.The conditions on the space-time meshes are removed,the space and time variables are decoupled.This kind of decoupling can overcome the high dimensional difficulties and complexities in both theoretical analysis and practical computations caused by unifying the space and time variables when established the scheme.And the idea of the proof without introducing dual problem presented here will build up the theoretical foundations of the stabilized SUPG space-time finite element scheme.
关 键 词:稳定化时空有限元方法 SUPG方法 对流扩散反应方程 高斯积分准则 误差估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.152.131