A Weighted Trudinger–Moser Inequality on R^N and Its Application to Grushin Operator  

在线阅读下载全文

作  者:Jia Jun WANG Qiao Hua YANG 

机构地区:[1]School of Mathematics and Statistics,Wuhan University,Wuhan 430072,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2020年第4期363-378,共16页数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(Grant No.11201346)。

摘  要:Let x=(x',x'')with x'∈Rk and x''∈R^N-k andΩbe a x'-symmetric and bounded domain in R^N(N≥2).We show that if 0≤a≤k-2,then there exists a positive constant C>0 such that for all x'-symmetric function u∈C0^∞(Ω)with∫Ω|■u(x)|^N-a|x'|^-adx≤1,the following uniform inequality holds1/∫Ω|x|^-adx∫Ωe^βa|u|N-a/N-a-1|x'|^-adx≤C,whereβa=(N-a)(2πN/2Γ(k-a/2)Γ(k/2)/Γ(k/2)r(N-a/2))1/N-a-1.Furthermore,βa can not be replaced by any greater number.As the application,we obtain some weighted Trudinger–Moser inequalities for x-symmetric function on Grushin space.

关 键 词:Trudinger–Moser inequality Grushin operator sharp constant H-type group 

分 类 号:O174[理学—数学] O178[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象