检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱程辉[1] 沈飞 王建平[1] 孙伟[1] ZHU Chenghui;SHEN Fei;WANG Jianping;SUN Wei(School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China)
机构地区:[1]合肥工业大学电气与自动化工程学院,安徽合肥230009
出 处:《传感器与微系统》2020年第5期30-33,40,共5页Transducer and Microsystem Technologies
基 金:国家自然科学基金资助项目(51877060)。
摘 要:针对卷积神经网络识别脱机手写体汉字时出现的梯度弥散问题,提出一种基于反馈知识迁移的识别方法。将卷积神经网络分解为主网络与若干子网络,使网络参数转移到低层数网络中。按字型结构分割脱机手写体汉字送入子网络中训练,再使用知识迁移将多个子网络的知识迁移到主网络中,结合反馈理论自适应调节子网络权重系数,实现对网络整体的知识整合。仿真实验表明:本文方法有效缓解了梯度弥散现象,具有较高的识别率。Aiming at the problems of gradient vanishing in recognition of off-line handwritten Chinese characters using convolutional neural network,a recognition approach based on knowledge transfer with feedback is given.Convolutional neural network is decomposed into a main network and several sub-networks,network parameters are transfered to networks with less layers.Chinese character samples are segmented and sent to sub-networks for training by type structure,then knowledge of several sub-network are transferred to main-network by knowledge transfer.Adjust the weight coefficient of sub-networks adaptively with feedback theory,to realize knowledge integration of the whole network.Simulation result shows that this approach relieves gradient vanishing effectively and has higher recognition rate.
关 键 词:脱机手写体汉字 梯度弥散现象 知识迁移 反馈 权重系数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.7.195