基于离散小波变换和梯度锐化的遥感图像融合算法  被引量:12

A Remote Sensing Image Fusion Algorithm Based on DWT and Gradient Sharpening

在线阅读下载全文

作  者:姜文斌 孙学宏 刘丽萍 JIANG Wenbin;SUN Xuehong;LIU Liping(Ningxia University,School of Physics and Electronic-Electrical Engineering,Yinchuan 750021,China;Ningxia University,School o£Information Engineering,Yinchuan 750021,China;Ningxia Key Laboratory of Desert Information Intelligent Perception,Yinchuan 750021,China)

机构地区:[1]宁夏大学物理与电子电气工程学院,银川750021 [2]宁夏大学信息工程学院,银川750021 [3]宁夏沙漠信息智能感知重点实验室,银川750021

出  处:《电光与控制》2020年第5期47-51,共5页Electronics Optics & Control

基  金:宁夏高等学校科学技术研究项目(NGY2017052)。

摘  要:针对当前遥感图像融合由于忽略图像边缘信息而出现光谱失真和模糊等问题,提出一种基于梯度锐化的离散小波变换(DWT)算法。首先,利用IHS变换从多光谱图像中提取亮度分量;接着,对亮度分量与全色图像进行离散小波变换来获取图像的高频和低频子带。对于低频子带,依据边缘特征使用梯度锐化准则,完成低频系数的融合;对于高频子带,使用像素区域均值方差最大化的方法,完成高频系数的融合。通过DWT与IHS逆变换得到结果。通过实验发现,设计的方法与当前的光谱锐化方法相比,融合的遥感图像光谱特征及视觉效果更为显著。Aiming at the problems of spectral distortion and blurring because of ignoring the image edge information,a Discrete Wavelet Transform(DWT) algorithm based on gradient sharpening is proposed.The IHS transform is used to extract the luminance component from the multi-spectral image,and then DWT is executed on the luminance component and the panchromatic image to acquire the high-frequency and low-frequency subbands.For the low-frequency subband,the gradient sharpening criterion is used according to the edge feature to implement the fusion of low-frequency coefficients.For the high-frequency subband,the way of maximizing the MSE of the pixel region is used to complete the fusion of the high-frequency coefficients.The results are obtained by inverse transformation of DWT and IHS.It is found through experiments that the spectral features and visual effects of the fused remote sensing image are better than that of the current spectral sharpening method.

关 键 词:遥感图像融合 IHS变换 DWT 梯度锐化 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象