检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:莫之剑 范彦斌[2] 彭明仔 MO Zhijian;FAN Yanbin;PENG Mingzai(Guangdong Liyuanheng Intelligent Equipment Co.,Ltd.,Huizhou,Guangdong 516000,China;School of Mechatronics Engineering,Foshan University,Foshan,Guangdong 528000,China;Mechanical and Electrical Engineering College,Guangzhou Vocational College of Technology&Business,Guangzhou 510000,China)
机构地区:[1]广东利元亨智能装备股份有限公司,广东惠州516000 [2]佛山科学技术学院机电工程学院,广东佛山528000 [3]广州科技贸易职业学院机电工程学院,广州510000
出 处:《机电工程技术》2020年第4期1-3,95,共4页Mechanical & Electrical Engineering Technology
摘 要:为了解决动力电池在生产过程中人工检测焊缝缺陷容易产生误检、漏检和无法实现自动化检测的问题,设计了一种基于3D机器视觉技术和机器学习的焊缝质量检测方法。采用支持向量机SVM学习焊缝关键特征值,得到最优分类超平面,训练完成后,相机采集图像,通过高斯滤波降噪、图像纠正和缺陷特征提取,然后SVM对缺陷特征值进行分类,判断产品是否存在缺陷。实验证明,该方法实现了100%在线自动化检测焊缝质量,并具有快速、准确的优点,成功地解决了动力电池生产过程中焊缝质量自动化检测难题。In order to solve the problem that the manual inspection of weld defects in the production process of power battery is easy to produce false inspection,missing inspection and unable to realize automatic inspection,a welding quality inspection method based on 3D machine vision technology and machine learning was designed.Support vector machine was used to learn the key characteristic values of weld seam,and the optimal classification hyperplane was obtained.After the training,the images was collected by the camera,denoises through Gaussian filtering,image correction and defect feature extraction,and the defect characteristic values were classified by SVM to determine whether the product has defects.The experiment shows that this method realizes 100%on-line automatic detection of weld quality,and has the advantages of fast and accurate,and successfully solves the problem of automatic detection of weld quality in the production process of power battery.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.216.39