基于随机森林和RBF人工神经网络模型的新丰江水库枯季入库径流中长期预报  被引量:12

Medium-long-term Forecast of the Runoff of the Xinfengjiang Reservoir in Dry Season Based on the Random Forest and RBF Artificial Neural Network

在线阅读下载全文

作  者:郑炎辉 张力澜 田兆伟 陈晓宏[2] ZHENG Yanhui;ZHANG Lilan;TIAN Zhaowei;CHEN Xiaohong(Guangzhou Fengzeyuan Water Conservancy Technology Co.,Ltd.,Guangzhou 510663,China;Sun Yat-sen University,Guangzhou 510275,China;Guangzhou Hydrology Bureau,Huizhou Branch,Huizhou 516003,China)

机构地区:[1]广州丰泽源水利科技有限公司,广东广州510663 [2]中山大学,广东广州510275 [3]广东省水文局惠州水文分局,广东惠州516003

出  处:《人民珠江》2020年第5期33-37,共5页Pearl River

基  金:国家重点研发计划项目(2017YFC0405900);广东省水利科技创新项目(2016-07、2016-01)。

摘  要:基于随机森林和RBF人工神经网络构建了新丰江水库枯季入库径流中长期预报模型,首先采用随机森林模型从74个水文气象特征量和前期降雨、径流中筛选预报因子,之后利用筛选的预报因子作为RBF神经网络的输入层,利用RBF神经网络对新丰江水库枯季入库径流每月的流量进行预报。结果表明,基于随机森林和RBF人工神经网络模型的枯季径流中长期预报模型精度较高,其中训练期平均合格率为91.24%,平均相对误差为7.80%,检验期平均合格率为67.31%,平均相对误差为26.73%,模型有较高的可靠性,预报结果可作为东江流域枯季径流预报重要参考依据。Based on the random forest and RBF artificial neural network, this paper establishes the medium-long-term forecast model for the runoff of Xinfengjiang reservoir in dry season, filters the forecast factors from 74 hydrometeorological features and pre-rainfall and runoff by the random forest, and then forecasts the monthly runoff of the Xinfengjiang reservoir in dry season by RBF neural network with the filtered forecast factor as the input layer. The results show that the medium-long-term forecast model for the runoff in dry season based on the random forest and RBF artificial neural network model has higher accuracy, among which the average pass rate in training period is 91.24%, with the average relative error of 7.80%;while the average pass rate in the test period is 67.31%, with the average relative error of 26.73%, so the model has high reliability. The results can be used as an important reference for the forecast of runoff in the Dongjiang River basin in dry season.

关 键 词:随机森林 神经网络 枯季径流 预报 

分 类 号:P338.2[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象