基于最大时间阈值与自适应步长的时间相关性感知数据去冗余算法  被引量:8

Temporal correlation perceptual data de-redundancy algorithm based on maximum time threshold and adaptive step size

在线阅读下载全文

作  者:朱容波[1] 李媛丽 丁千傲 虞脉 ZHU Rongbo;LI Yuanli;DING Qian′ao;YU Mai(College of Computer Science,South-Central University for Nationalities,Wuhan 430074,China)

机构地区:[1]中南民族大学计算机科学学院,武汉430074

出  处:《中南民族大学学报(自然科学版)》2020年第3期295-301,共7页Journal of South-Central University for Nationalities:Natural Science Edition

基  金:国家自然科学基金资助项目(61772562);湖北省自然科学基金杰出青年项目(2017CFA043);国家民委中青年英才培养计划项目(2016 03 08)。

摘  要:针对传感器网络感知数据去冗余方法存在冗余度高的不足,提出一种基于最大时间阈值及自适应步长的时间相关性感知数据去冗余算法(TCDA).TCDA充分考虑了去冗余过程中,数据变动幅度大、局部最大值与最小值存在较大误差、局部特征值的丢失以及数据平稳时的数据相似阈值失效因素;TCDA在保证去冗余率的前提下,设置最大时间阈值防止数据相似阈值失效,确保数据的时效性;同时TCDA采用自适应步长机制降低计算复杂性,减少计算能耗.实验结果表明:TCDA与数据传输协议(DaT)方法相比,节约了3%的传输能耗和50%的计算能耗.In order to overcome the high redundancy of sensing data in sensor networks,a temporal correlation sensing data de-redundancy algorithm is proposed based on the maximum time threshold and adaptive step size.TCDA fully considers the following factors in the process of de-redundancy:when the range of data variation is large,there is a large error about the local maximum or minimum value,missing of local eigenvalue and when the data fluctuation is stable,the data similarity threshold can′t work effectively.With considering the ratio of de-redundancy,TCDA guarantees the timeliness of the sensing data with maximum time threshold to prevent the failure of data similarity threshold.Meanwhile,the adaptive step size mechanism is proposed to reduce the complexity of calculation and the energy consumption.Experimental results show that,compared with the data transmission protocol method,TCDA is able to reduce transmission energy consumption by 3%and calculation energy consumption by 50%.

关 键 词:感知数据 去冗余算法 最大时间阈值 自适应步长 时间相关性 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象