基于深度学习的心脏磁共振图像分割  

在线阅读下载全文

作  者:张博 

机构地区:[1]中南民族大学生物医学工程学院,湖北武汉430074

出  处:《绿色科技》2020年第6期230-232,共3页Journal of Green Science and Technology

摘  要:针对分割心脏图像中半自动分割方法存在分割精度较低、计算复杂度较高等问题,提出了采用改进的全卷积神经网络(Fully Convolutional Networks,FCN)来自动分割心脏左、右心室及心肌。在初始训练前对原始心脏影像作预处理,对处理后的图像进行模型训练,在网络下采样与上采样过程中加入批归一化层(Batch Normalization,BN),加速网络收敛,降低网络过拟合,实验选择加权交叉熵损失函数,用于提升网络性能,经过softmax分类器得到分割结果。实验结果表明:该方法能够较好地分割出左心室等结构,具有较高的分割精度。

关 键 词:心脏影像 全卷积神经网络 批归一化层 损失函数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象