检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈学义 方国华[1] 吴承君 CHEN Xueyi;FANG Guohua;WU Chengjun(College of Water Conservancy and Hydropower,Hohai University,Nanjing 210098,China)
出 处:《人民黄河》2020年第6期58-62,67,共6页Yellow River
基 金:湖南省水利科技项目(〔2015〕245-13);湖南省水利科技重点项目(湘水科计〔2016〕194-21)。
摘 要:针对水电站多目标联合优化调度问题,提出双层改进粒子群算法(TIPSO)。该算法通过动态廊道约束,提高粒子群算法中粒子初始解的质量;通过改进动态权重系数,增强粒子群算法在前期的全局寻优能力和后期的局部寻优能力,提高粒子群算法的收敛性。将该算法应用于求解河南省陆浑水电站多目标优化调度问题,计算结果表明双层改进粒子群算法具有较好的收敛性能;通过与动态规划算法计算结果对比,表明该算法求解高维、复杂、多约束问题的可靠性和有效性。Aiming at the multi-objective optimal operation of hydropower station, a two-layer improved particle swarm optimization algorithm(TIPSO) was proposed. The TIPSO increased the quality of initial solution in particle swarm optimization through dynamic corridor constraint. By improving the dynamic weight coefficient, TIPSO could improve the global optimization ability in the early stage and the local optimization ability in the late stage. It improved the convergence of particle swarm optimization. The TIPSO was applied to the multi-objective optimization operation of Luhun Hydropower Station in Henan Province. The results show that TIPSO has better convergence performance. Compared with the results of the dynamic programming algorithm, it shows that the algorithm is reliable and effective in solving high-dimensional, complex and multi-constrained issues.
分 类 号:TV213.4[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.133.138