基于梯度增强决策树算法的纸张质量软测量模型  被引量:8

Gradient Boosting Decision Tree Algorithm Based Soft Measurement Model for Paper Quality

在线阅读下载全文

作  者:江伦 满奕[1,2] 李继庚 洪蒙纳[1] 孟子薇[1] 朱小林 JIANG Lun;MAN Yi;LI Jigeng;HONG Mengna;MENG Ziwei;ZHU Xiaolin(State Key Lab of Pulp and Paper Engineering,South China University of Technology,Guangzhou,Guangdong Province,510640;Shenzhen Xinyichang Technology Co.,Ltd.,Shenzhen,Guangdong Province,518000)

机构地区:[1]华南理工大学制浆造纸工程国家重点实验室,广东广州510640 [2]深圳新益昌科技股份有限公司,广东深圳518000

出  处:《中国造纸》2020年第5期37-42,共6页China Pulp & Paper

摘  要:本研究提出了一种基于梯度增强决策树(GBDT)算法的纸张质量软测量模型,该方法可在线软测量纸张的关键物理指标如抗张强度、柔软度和松厚度。结果表明,采用GBDT进行纸张质量软测量时,抗张强度、柔软度和松厚度的平均相对误差分别为7. 21%、7. 38%和3. 5%;采集新数据验证后,纸张抗张强度、柔软度和松厚度的平均相对误差分别为6. 87%、6. 88%和3. 12%,表明模型对新验证数据的预测结果精度高。In this study,a soft-sensing model of paper quality based on gradient boosting decision tree(GBDT)was proposed. This method could soft-measure the key physical indicators of paper such as tensile strength,softness and bulk online. The results showed that the average relative errors of tensile strength,softness and bulk when using GBDT for soft measurement of paper quality were 7. 21%,7. 38%,and3. 5%,respectively. Comparing the new data collected for verification,the average relative errors of tensile strength,softness,and bulk were 6. 87%,6. 88%,and 3. 12%,respectively,indicating that the model had high accuracy in predicting the new verification data,which could provide a reference for stabilizing product quality,optimizing the production process and reducing production costs.

关 键 词:数据模型 纸张质量 软测量 梯度增强决策树(GBDT)算法 

分 类 号:TS752[轻工技术与工程—制浆造纸工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象