检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李若尘 朱悠翔 孙卫民 龚思源 钱鑫 业宁[1] LI Ruochen;ZHU Youxiang;SUN Weimin;GONG Siyuan;QIAN Xin;YE Ning(School of Information Technology,Nanjing Forestry University,Nanjing,210037,China;Housing and Real Estate Promotion Center of Jiangsu Provincial Department of Housing and Urban Rural Development,Nanjing,210009,China;Nanjing Jinling High School,Nanjing,210005,China)
机构地区:[1]南京林业大学信息技术学院,南京210037 [2]江苏省住建厅住宅与房地产业促进中心,南京210009 [3]南京市金陵中学,南京210005
出 处:《数据采集与处理》2020年第3期494-505,共12页Journal of Data Acquisition and Processing
基 金:国家重点研发计划(2016YFD0600101)资助项目;江苏省住建厅计划(2016ZD44)资助项目;江苏省大学生训练计划(201810298052Z)资助项目。
摘 要:传统的木材缺陷定位方法主要有物理设备检测和传统计算机技术检测,但这两种方法均存在数据收集困难、高度依赖数据本身等问题,不适用于实际生产。本文提出一种基于深度学习的自动缺陷定位模型(Automatic defect location model,ADLM),包含单缺陷定位模型(Single defect location model,SDLM)与多缺陷定位模型(Multi-defect location model,MDLM),满足不同需求。模型使用MobileNet作为骨干网,只需少量数据集进行训练。在公开数据集Wood Defect Database中,该模型可获得86.1%的缺陷识别率。在单缺陷数据集中,该模型可获得97.5%的定位精确率。在多缺陷数据集中,该模型可获得90.0%的定位精确率。与传统的木材缺陷识别模型相比,基于深度学习的自动缺陷定位模型无须前期人工提取特征,具有检测速度更快、精准度更高以及适用性更广等优点。The traditional wood defect location methods mainly include physical equipment detection and traditional computer technology detection,but they are difficult to collect data,highly dependent on the data itself,which are not suitable for actual production.We propose an automatic defect location model(ADLM)based on deep learning,which includes single defect location model(SDLM)and multi-defect location model(MDLM)to meet different requirements.This model uses MobileNet as the backbone network,and only a few data sets are needed for training.In the public data set Wood Defect Database,this model has a defect identification rate of 86.1%.In the single defect data set,positioning accuracy of the model can achieve 97.5%.In the multi-defect data set,positioning accuracy of the model can achieve 90.0%.Compared with the traditional model,the ADLM need not manual feature extraction at the early stage,and has the advantages of faster detection speed,higher accuracy and wider applicability.
关 键 词:自动缺陷定位模型方法 多缺陷定位模型 木材图像检测 MobileNet
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200