领域本体驱动的招投标网页解析方法  被引量:2

Domain ontology driven approach for bidding webpage parsing

在线阅读下载全文

作  者:马冬雪 宋设 谢振平[1,2] 刘渊 MA Dongxue;SONG She;XIE Zhenping;LIU Yuan(College of Digital Media,Jiangnan University,Wuxi Jiangsu 214122,China;Jiangsu Key Laboratory of Media Design and Software Technology(Jiangnan University),Wuxi Jiangsu 214122,China;Inspur Zhuoshu Big Data Industry Development Company Limited,Wuxi Jiangsu 214125,China)

机构地区:[1]江南大学数字媒体学院,江苏无锡214122 [2]江苏省媒体设计与软件技术重点实验室(江南大学),江苏无锡214122 [3]浪潮卓数大数据产业发展有限公司,江苏无锡214125

出  处:《计算机应用》2020年第6期1574-1579,共6页journal of Computer Applications

基  金:国家自然科学基金资助项目(61872166);江苏省科技计划项目(BE2018056)。

摘  要:针对正则表达式解析招投标网页效率低下的问题,提出了一种基于招投标领域本体的网页自动化解析新方法。首先,分析了招投标网页文本的结构特征;其次,构建了招投标本体的轻量级领域知识模型;最后,给出一种招投标网页元素语义匹配与抽取算法,实现招投标网页的自动化解析。实验结果表明,新方法通过自适应的解析,准确率、召回率分别可达到95.33%、88.29%,与正则表达式方法相比,分别提高了3.98个百分点和3.81个百分点。所提方法可实现自适应地对招投标网页中语义信息的结构化解析抽取,能够较好地满足实用性能要求。In order to solve the low efficiency problem of parsing bidding webpages when using regular expression,a new automatic method was proposed based on bidding ontology model.Firstly,the structural features of bidding webpage texts were analyzed.Futhermore,a lightweight domain knowledge model on bidding ontology was constructed.Finally,a new algorithm for semantic matching and extraction of bidding webpage elements was introduced to realize the automatic parsing of bidding webpages.The experimental results show that,the accuracy and recall of the new method can reach 95.33%and 88.29%respectively by adaptive parsing.Compared with the regular expression method,the performance can be improved by 3.98 percentage points and 3.81 percentage points respectively.The proposed method can adaptively realize the structured parsing and extraction of semantic information in bidding webpages,and can satisfy the requirements of practical applications.

关 键 词:招投标 领域本体 网页解析 元解析模型 知识图谱 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象