检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏志同[1] 王春雷 SU Zhi-tong;WANG Chun-lei(Information Institute of North China University Of Technology,Beijing 100144,China)
出 处:《软件》2020年第5期105-107,197,共4页Software
摘 要:焙烧是阳极生产中最重要的一环,焙烧的周期为128小时,焙烧的主要工艺参数是焙烧炉各火道的温度及其温度的变化,在整个焙烧期间对铝用阳极的质量有着至关重要的影响。本文针对焙烧工艺参数与质量数据之间的关系进行建模,应用深度学习技术,采用LSTM算法对焙烧历史数据进行训练,旨在找到工艺与质量两者之间的关系,获得质量预测模型,让企业更好把控焙烧过程中的工艺参数,为焙烧生产过程提供辅助作用。实验结果表明,LSTM在阳极质量预测中有较好的效果。Bake is the most important part of anode production.The bake cycle is 128 hours.The main process parameters of bake are the temperature of each firing path of the bake furnace and its temperature change.The quality of the anode for aluminum is crucial during the whole firing important influence.This article models the relationship between bake process parameters and quality data,applies deep learning technology,and uses the LSTM algorithm to train roasting history data.The purpose is to find the relationship between the process and quality,and to obtain a quality prediction model which is for enterprises to better control the process parameters in the bake process to provide auxiliary effects for the roasting production process.The experimental results show that LSTM has a better effect on anode quality prediction.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31