检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈航 谢亮 李佩哲 王福新[1] 刘洪[1] CHEN Hang;XIE Liang;LI Pei-zhe;WANG Fu-xin;LIU Hong(School of Aeronautics and Astronautics,Shanghai Jiaotong University,Shanghai 200240,China)
出 处:《科学技术与工程》2020年第3期1217-1223,共7页Science Technology and Engineering
基 金:国家自然科学基金(11802179)。
摘 要:对任何基于网格的数值模拟而言,获得网格收敛的解是结果可信的必要条件,结冰模拟也是如此。为充分、完整地考察目前普遍使用的结冰数值模拟算法的网格收敛性情况,详细定量地验证了其在霜冰、混合冰、明冰等诸多工况下的网格收敛情况。结果表明:当前普遍使用的算法基本上可以获得网格收敛的结果。其中霜冰的收敛规律较好,角状冰收敛的规律性不如霜冰情况。目前常用算法的可靠性基本上满足工程需求,但对于有角冰的情况,在实际应用中需要进行详细谨慎的网格收敛性验证。For any numerical simulation based on grid,obtaining mesh-independent solution is a necessary condition for the result to be credible.It is the same with icing simulations.In order to fully and completely investigate the grid convergence of the numerical algorithms for the icing accretion widely used in current,which is quantitatively verified its grid convergence in detail using many cases such as rime ice,mixed ice and glaze ice.The results show that the current commonly used algorithms could basically obtain mesh-independent solutions.Among them,the convergence of the rime ice is very regular,but the regularity of the ice with horns is not as good as the rime one.It is indicated that the commonly used algorithms could basically satisfy the requirements in engineering.However,careful verification is essential for the numerical simulation about the ice with horns in practical applications.
关 键 词:结冰模拟 计算流体力学 网格收敛性 拉格朗日方法 网格变形
分 类 号:V211.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49