GAD:基于拓扑感知的时间序列异常检测  被引量:12

GAD: topology-aware time series anomaly detection

在线阅读下载全文

作  者:戚琦[1] 申润业 王敬宇[1] QI Qi;SHEN Runye;WANG Jingyu(State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China)

机构地区:[1]北京邮电大学网络与交换国家重点实验室,北京100876

出  处:《通信学报》2020年第6期152-160,共9页Journal on Communications

基  金:国家重点研发计划基金资助项目(No.2018YFB1800502);国家自然科学基金资助项目(No.61671079,No.61771068);北京市自然科学基金资助项目(No.4182041)。

摘  要:为了解决网络中节点设备异常检测、智能运维、根因分析等问题,针对链路时延、网络吞吐率、设备内存使用率等时序数据,提出了一种基于图的门控卷积编解码异常检测模型。考虑网络场景的实时性需求以及网络拓扑连接关系对时序数据的影响,基于门控卷积对时序数据并行提取时间维度特征并通过图卷积挖掘空间依赖关系。基于时空特征提取模块组成的编码器对原始输入时序数据编码后,卷积模块组成的解码器用于重构时序数据。原始数据和重构数据间的残差进一步用于计算异常分数并检测异常。在公开数据和模拟仿真平台上的实验表明,所提模型相对于目前的时间序列异常检测基准模型具有更高的识别准确率。To solve the problems of anomaly detection,intelligent operation,root cause analysis of node equipment in the network,a graph-based gated convolutional codec anomaly detection model was proposed for time series data such as link delay,network throughput,and device memory usage.Considering the real-time requirements of network scenarios and the impact of network topology connections on time series data,the time dimension features of time series were extracted in parallel based on gated convolution and the spatial dependencies were mined through graph convolution.After the encoder composed of the spatio-temporal feature extraction module encoded the original input time series data,the decoder composed of the convolution module was used to reconstruct the time series data.The residuals between the original data and the reconstructed data were further used to calculate the anomaly score and detect anomalies.Experiments on public data and simulation platforms show that the proposed model has higher recognition accuracy than the current time series anomaly detection benchmark algorithm.

关 键 词:智能运维 异常检测 时间序列 时空卷积 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象