检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨晶晶[1] 韩闰凯 吴占福 李忠华 杨东 李玲 YANG Jingjing;HAN Runkai;WU Zhanfu;LI Zhonghua;YANG Dong;LI Ling(School of Information Science and Engineering,Hebei North University,Zhangjiakou 075000,China;Jibei Comprehensive Test Promotion Station,Egg and Broiler Industry Technology System of Hebei Province,Zhangjiakou 075000,China)
机构地区:[1]河北北方学院信息科学与工程学院,张家口075000 [2]河北省蛋肉鸡产业技术体系冀北综合试验推广站,张家口075000
出 处:《农业机械学报》2020年第6期258-263,92,共7页Transactions of the Chinese Society for Agricultural Machinery
基 金:河北省现代农业产业技术体系蛋鸡肉鸡创新团队项目(HBCT2018150408);张家口市科技计划重点研发项目(1911016C-9);河北省高等学校科学技术研究重点项目(ZD2017204)。
摘 要:为有效辨别雏鸡性别,提高养鸡效益,针对部分雏鸡的泄殖腔特征不明显、采集雏鸡泄殖腔图像易受光线影响的问题,提出了一种基于卷积神经网络和图像深度特征的雏鸡性别自动鉴别方法。以翻肛法采集的雏鸡泄殖腔图像为研究对象,利用卷积神经网络构建待识别雏鸡泄殖腔的深度特征和雏鸡泄殖腔的深度特征向量集合库;将待识别雏鸡泄殖腔的深度特征与雏鸡泄殖腔的深度特征集合库进行相似度比较,并对比较结果进行排序;将排序结果中排在前n个与待识别雏鸡泄殖腔图像最接近的深度特征,与待识别雏鸡泄殖腔的深度特征进行特征融合,再通过卷积神经网络进行识别。结果表明,本文方法在测试数据集的识别准确率达到了97.04%,在生产环境下识别准确率达到了96.82%,相比常规的卷积神经网络方法,本文方法提高了雏鸡性别的识别准确率。Aiming at the problems of some chicks’unobvious cloacal features and the influence of light on the collection of chicks’cloacal images,a method of automatic recognition of chick sex based on convolutional neural network(CNN)and image depth features was proposed to effectively distinguish male and female chicks and enhance the benefit of raising chickens.Taking chicks’cloacal images collected by the method of anal examination as the research object,a CNN was used to establish vector collection libraries,including the in-depth features of both chicks’cloacal images to be identified and chicks’cloacal images.Similarity comparison was performed between the collection libraries of the in-depth features of chicks’cloacal images to be identified,and chicks’cloacal images and the comparative results were ranked.Feature fusion was conducted for the in-depth features that were ranked top n in the ranking results and were the most similar to chicks’cloacal images to be identified and the in-depth features of chicks’cloacal images to be identified.The depth characteristics of the clonal cavity of the chick were highlighted,and then identification was carried out via CNN.The experiment results showed that the accuracy on the test dataset reached 97.04%,and in the production environment reached 96.82%.Compared with conventional CNN methods,it improved the recognition rate for identifying male and female chicks’cloaca.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.143.11