短丝纤维卷绕牵伸齿轮箱故障信号的图像特征提取方法  被引量:1

Image Feature Extraction Method for Fault Signal of Short Fiber Winding and Drafting Gearbox

在线阅读下载全文

作  者:李亚利 Li Yali(Party Committee of Administrative Office,Xi an Polytechnic University,Xi an 710048,China)

机构地区:[1]西安工程大学机关党委,西安710048

出  处:《计算机测量与控制》2020年第6期7-11,共5页Computer Measurement &Control

摘  要:针对短丝纤维卷绕牵伸齿轮箱故障信号不易提取的问题,提出了基于图像纹理信息的特征提取方法;通过对齿轮箱振动信号进行小波包双谱分析,获得具有稳定纹理信息的振动信号双谱图,采用基于小波变换对双谱图进行图像融合,提高图像的综合纹理特征;采用灰度共生矩阵的4个特征参数对振动信号的双谱图进行加权融合特征提取;在短丝生产线上对齿轮箱常见的齿轮破损和裂纹进行了实验分析,结果表明该方法的故障识别率达到85%以上。Aiming at the problem that the fault signal of the short fiber winding and drafting gearbox is difficult to extract,the feature extraction method based on image texture information is proposed.By wavelet packet bispectrum analysis of the vibration signal of the gearbox,the bispectrum of the vibration signal with stable texture information is obtained.The image fusion based on wavelet transform is used to improve the integrated texture features of the image.The weighted fusion feature extraction of the bispectrum of the vibration signal is performed by using four characteristic parameters of the gray level co-occurrence matrix.The common gear damage and crack of gearbox are analyzed in the short fiber production line.The results show that the fault identification rate of this method is more than 85%.

关 键 词:短丝纤维 齿轮故障诊断 小波包变换 双谱图 灰度共生矩阵 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象