检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张庆玉 董晓华[1,2] 葛亮 赵乔 严东英 李璐 ZHANG Qingyu;DONG Xiaohua;GE Liang;ZHAO Qiao;YAN Dongying;LI Lu(College of Hydraulic and Environmental Engineering,China Three Gorges University,Tichang,Hubei 443002,China;Water Resources Security Protection Collaborative Innovation Center of Hubei Province,Wuhan 430072,China;The Three Gorges Economic and Technical Development Company Limited,Beijing 100038,China;Power China Guiyang Engineering Corporation Limited,Guiyang 550081,China)
机构地区:[1]三峡大学水利与环境学院,湖北宜昌443002 [2]水资源安全保障湖北省协同创新中心,武汉430072 [3]长江三峡技术经济发展有限公司,北京100038 [4]中国电建集团贵阳勘测设计研究院有限公司,贵阳550081
出 处:《植物生理学报》2020年第3期489-500,共12页Plant Physiology Journal
基 金:国家自然科学基金(40701024);三峡大学学位论文培优基金(2020SSPY009)。
摘 要:蒸腾作用是植物的重要生理过程,精细模拟与预测蒸腾速率有助于植株需水量的确定。本文使用茎流计和气象站监测柑橘树蒸腾速率及周边气象因子,基于人工神经网络,构建10 min尺度的柑橘树日间蒸腾速率预测模型。以环境温度、环境湿度、太阳净辐射、风速四种气象因子组合,构建的4-7-1网络结构的柑橘树蒸腾速率预测模型精度最高,与实测数据的Pearson相关系数高于0.8;与FAO作物系数模型和经验公式模型相比,神经网络模型对10 min间隔的柑橘树蒸腾速率预测更加准确,建模所需数据量更少,在"午休"现象的预测上符合实际规律。结果表明以气象因子作为输入的神经网络模型,能够对10 min间隔的柑橘树蒸腾速率进行更加精细的模拟与预测。Transpiration is an important physiological process of plants. Accurate simulation and prediction of transpiration rate are helpful to determine the water demand of plants. The packaged stem sap flow gauge and the meteorological station were used to measure the stem sap flow rate and the peripheral meteorological factors. Based on the artificial neural network, a 10-minute daytime transpiration rate prediction model of citrus was established by using different combinations of meteorological factors. The results showed the 4-7-1 network model which was established by combining four meteorological factors, including environmental temperature, environmental humidity, solar net radiation and wind speed had the optimal result, and the Pearson correlation coefficient between prediction results and measured data was higher than 0.8. Compared with FAO coefficient approach model and empirical formula model, neural network model was more accurate in predicting transpiration rate of citrus trees with 10 min interval, less data was required for modeling, and more in line with practical rules in predicting the phenomenon of "lunch break". It shows that the artificial neural network model can simulate and predict the transpiration rate of citrus trees more precisely.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249