检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵海俊 缪玲娟[1] 郭岩冰 SHAO Hai-jun;MIAO Ling-juan;GUO Yan-bing(School of Automation,Beijing Institute of Technology,Beijing 100081,China)
出 处:《宇航学报》2020年第4期447-455,共9页Journal of Astronautics
基 金:国家自然科学基金(61473039)。
摘 要:针对观测存在野值的非线性系统滤波问题,本文综合运用多高斯和近似算法(GSA)、贝叶斯公式、马尔科夫链蒙特卡洛算法(MCMC)以及集合卡尔曼滤波算法(EnKF)设计了一种能从状态后验分布中抽取粒子的改进粒子滤波算法,并根据模糊理论为此改进算法设计了模糊抗野值功能,从而提出了模糊抗野值集合粒子滤波算法,命名为REnPF。GPS辅助SINS行进间对准的仿真实验表明,REnPF能够很好地避免虚警、漏检问题,并能提供良好的滤波精度。When a global positioning system(GPS) aided strapdown inertial navigation system(SINS) aligns in-motion, the filtering system will be nonlinear because of the large initial attitude error. In addition, when the GPS signals are disturbed, the outliers appearing in the observation will reduce the filtering accuracy and even cause the filtering divergence. Aiming at the problem of filtering for nonlinear systems with outliers, an improved particle filter algorithm is designed in this paper, which can extract particles from the posterior distribution of states by using Gaussian sum approximation algorithm(GSA), Bayesian formula, Markov chain Monte Carlo algorithm(MCMC) and ensemble Kalman filter algorithm(EnKF) synthetically. Furthermore, according to the fuzzy theory, an outlier constraint function is added into the improved algorithm to construct the robust ensemble particle filter(REnPF) proposed in this paper. The simulation results of the GPS aided SINS in-motion alignment show that the REnPF can effectively avoid false alarm and missing detection problems, and provide good filtering accuracy.
分 类 号:V249.32[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.70.182