基于MATLAB/Minitab的大规模定制质量控制图研究  被引量:4

Research on Mass Customization Quality Control Chart Based on MATLAB/Minitab

在线阅读下载全文

作  者:赵玲玲 樊树海[1,2] 吕庆文 徐文浩 ZHAO Lingling;FAN Shuhai;LV Qingwen;XU Wenhao(Department of Industrial Engineering,Nanjing University of Technology, Nanjing Jiangsu 210009, China;MIT Quality Information Program “Data Quality & Info Security” Lab, Cambridge Massachusetts, The United States of America)

机构地区:[1]南京工业大学工业工程系,江苏南京210009 [2]MIT Quality Information Program “Data Quality & Info Security” Lab, Cambridge Massachusetts, The United States of America

出  处:《机床与液压》2020年第11期146-149,共4页Machine Tool & Hydraulics

基  金:国家自然科学基金资助项目(71671089,71171110)。

摘  要:大规模定制(MC)是目前先进的生产模式,其生产随客户需求而变,具有不可预测性,且产品开发及生命周期短,生产批量少,设备调整时间短。因目前的控制图并不完全适用于此生产模式,故提出针对大规模定制型制造企业的生产过程监测的联合统计制程方法,即基于Q统计量的指数加权移动平均控制图的大规模定制制造系统。利用仿真软件MATLAB的统计工具箱模拟与大规模定制相似的一组随机数据,通过MATLAB软件编码将其转换为Q统计量后再利用Minitab软件的统计分析和图表功能来验证此联合统计制程方法的可行性及预测精度。Mass customization(MC)is a state-of-the-art production model,its production varies with customer needs,and is unpredictable.Mass customization has the characteristics of short product development and life cycle,low production volume and short equipment adjustment time.Because the current control chart was not fully applicable to this production mode,a joint statistical process method for the production process monitoring of mass customization manufacturing enterprises was proposed,which was an index-weighted moving average control chart for mass customization manufacturing system based on Q statistic.The statistical toolbox of MATLAB was used to simulate a group of random data similar to mass customization,the data were converted into Q statistic by using MATLAB,and then the feasibility and prediction accuracy of this joint statistical process method were verified by using the statistical analysis and chart function of Minitab.

关 键 词:大规模定制 MATLAB Minitab 仿真实验 质量控制图 Q统计量 

分 类 号:F273.2[经济管理—企业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象